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ABSTRACT 

The need to correct mass conservation errors is an integral part of the numerics underlying 
CATHENA. In the past, it was found necessary for stability reasons to neglect mass conservation 
errors when the code ran at the minimum time step or a re - do occurred This could potentially lead 
to significant discrepancies in fluid inventory during some simulations. In CATHENA 
MOD-3.5b/Rev 0, a revised mass conservation strategy was implemented that addresses the 
weaknesses of the previous strategy. Mass is now conserved at all times, and a redistribution strategy 
has been implemented to ensure numerical stability when rapidly varying conditions could lead to 
node overfilling. This work outlines the refined algorithm, and illustrates its effectiveness. 

1 INTRODUCTION 

CATHENA (Canadian Algorithm for THErmalhydraulic Network Analysis) is a computer program 
designed for the analysis of two-phase flow and heat transfer in piping networks. The CATHENA 
thermalhydraulic code was developed by AECL, Whiteshell Laboratories, primarily for the analysis 
of postulated accident conditions in CANDU® reactors. 

The thermalhydraulic model employed in CATHENA uses a one-dimensional, non-equilibrium 
two-fluid model consisting of six partial differential equations for mass, momentum and energy 
conservation; three for each phase. A first-order finite-difference representation is used to solve the 
differential equations, utilizing a semi-implicit one-step method in which the time step is not limited 
to the material Courant number. At each time step, the coupled linear finite-difference equations 
representing the thermalhydraulic network to be modelled form a sparse matrix which is written and 
solved. Details of the thermalhydraulic model employed in CATHENA and the numerical solution 
used to implement it can be found in reference [1]. 

2 MASS CONSERVATION ERROR CORRECTION ALGORITHM 

One of the consequences of the linearized numerical algorithm employed in CATHENA to solve the 
thermalhydraulic conservation equations is need for a mass correction term. Since the density of the 
liquid and gas phases is not a linear function of pressure and phase enthalpy, a truncation error in 
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mass and energy can develop over a time step. An additional error may also result during transitions 
between two-phase and single-phase conditions since the void fraction must be limited to values 
between zero and unity. 

To prevent this truncation error from accumulating, a mass correction term is calculated at each time 
step for each phase for each thermalhydraulic node and is applied in the subsequent time step. The 
error correction E term can be expressed as follows for both the gas and liquid terms: 

n+1 ( n n+1 n+1 n+1 
Ek = a k Pk —ak Pk )± Plkz (4 +1 — ak n+1) (1) 

where k = f for liquid and k = g for the gas phase, n represents the time step, pk is phase density, 

and ak is the void fraction. The otZpkn+1 term in Equation (1) represents the mass in the system at 
time step n + 1 as calculated using the dependent variables and the linearized property routines. The 

+1 n+1 ak pk term represents the actual phase mass in the system as calculated using the derived value 
for pk. The difference between these two terms represents the mass error incurred as a result of the 
linearizing the property routines in CATHENA. 

The p7, (ar l — ar l) term in Equation (1) represents the phase mass error incurred due to truncation 

of the void fraction term. Here ar l is the value of void fraction as obtained through the solution of 
the finite difference equations, and ar l is the "clipped" value of void fraction at one or zero which 
results if the calculated finite-difference solution result is outside these limits, as defined by: 

otnk+1 — min [max [ank +1 ' 0.0] , 1.0] — (2) 

The mass error Ek is calculated at the end of the time step and is applied as a correction term in the 
new time step as shown schematically in Figure 1. The mass correction term is applied as a source 
term in the mass conservation equations in the next time step. 
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FIGURE 1: Overview of CATHENA Mass Error Correction Scheme. 

It was found that the application of the mass error term could cause numerical instabilities under 
certain conditions. As shown in Figure 1, the mass truncation incurred from step n — 1 to n is applied 

2 

21st Annual Conference of the Canadian Nuclear Society 
Toronto, Ontario, Canada I June 11-14, 2000 

mass and energy can develop over a time step. An additional error may also result during transitions 
between two-phase and single-phase conditions since the void fraction must be limited to values 
between zero and unity. 

To prevent this truncation error from accumulating, a mass correction term is calculated at each time 
step for each phase for each thermalhydraulic node and is applied in the subsequent time step. The 
error corrections term can be expressed as follows for both the gas and liquid terms: 

8n+l _ (anpn+l _ an+lpn+l) + Pn (an+l _ an+l) k - kk k k k k k (1) 

where k = f for liquid and k = g for the gas phase, n represents the time step, Pk is phase density, 

and ak is the void fraction. The a,:pz+l term in Equation (1) represents the mass in the system at 
time step n + l as calculated using the dependent variables and the linearized property routines. The 
a;+1 pz+1 term represents the actual phase mass in the system as calculated using the derived value 
for Pk. The difference between these two terms represents the mass error incurred as a result of the 
linearizing the property routines in CATHENA. 

The p,:(a;+1 - a;+1) term in Equation (1) represents the phase mass error incurred due to truncation 

of the void fraction term. Here a;+ 1 is the value of void fraction as obtained through the solution of 

the finite difference equations, and a;+1 is the "clipped" value of void fraction at one or zero which 
results if the calculated finite-difference solution result is outside these limits, as defined by: 

a;+1 = min [ max [ a;+l, 0.0], 1.0] (2) 

The mass error Skis calculated at the end of the time step and is applied as a correction term in the 
new time step as shown schematically in Figure 1. The mass correction term is applied as a source 
term in the mass conservation equations in the next time step. 

Extract 
Error 
Terms 

( -0 Error fucurred n 
Due to Non-Linear 
Properties 

Apply Error Terms 
To Source Terms 

Setup 
Coefficient 
Matrix 

Setup 
Source 
Terms 

Solve 
Ax=B 

FIGURE 1: Overview of CATHENA Mass Error Correction Scheme. 

It was found that the application of the mass error term could cause numerical instabilities under 
certain conditions. As shown in Figure 1, the mass truncation incurred from step n - l to n is applied 

2 



21st Annual Conference of the Canadian Nuclear Society 
Toronto, Ontario, Canada / June 11-14, 2000 

as part of the equations used to advance the code from step n to n + 1. However, if step n — 1 to n is 
much larger than step n to n + 1 problems may occur. For example, a rapid transient could decrease 
the time step and/or cause a re - do to occur. In this case, a potentially large error correction 
incurred from step n — 1 to n could be applied over a very small time step from step n to n + 1. This 
correction can cause instabilities in the solution by adding a large source term into the mass 
conservation relationships for the next time step. 

An automatic timestep controller controls the size of time step CATHENA uses to advance the 
solution. The timestep controller monitors the change in critical state variables from one time step to 
another. If the change in these variables exceed pre-defined limits, the timestep controller decreases 
the subsequent solution timestep to minimize numerical errors in the solution. Conversely, if the 
change in these variables is smaller than pre-defined limits, the timestep controller can increase the 
subsequent solution timestep to minimize the computational time requirements. If the variable 
changes are bounded by the pre-defined limits, the timestep controller does not change the 
subsequent solution timestep. 

In cases where the solution undergoes a particularly violent change, the timestep controller also has 
the ability to cause CATHENA to execute a re-do. In this case, the solution is rejected, and the step 
is "re-done" using 1 /4 the previous time step. In particularly severe cases, several re - dos can occur 
in sequence, and the solution time step can be drastically reduced. This procedure can be repeated 
until the solution time step reaches the allowed minimum time step. 

In versions of CATHENA prior to MOD-3.5b/Rev 0, a simple solution was chosen to avoid potential 
problems caused by the application of the mass correction term. Assuming numerical instabilities 
occured primarily when the code was running at the minimum allowed timestep or performing a 
re - do, no mass conservation correction was performed under these conditions. However, this 
technique can cause undesirable mass discrepancies in the system under investigation if a significant 
number of re-dos or solutions steps at minimum timesteps are encountered. 

3 REVISED MASS CONSERVATION ERROR CORRECTION ALGORITHM 

For CATHENA MOD-3.5b/Rev 0, a revised mass conservation error algorithm was implemented. 
Since CATHENA is a two-phase code, both the liquid and vapour mass conservation equations have 
mass error correction terms. For the vapour phase, it was assumed that the relatively high vapour 
compressibility will accommodate a correction term of any size without causing numerical 
difficulties. As a result, the vapour mass error is always added back into the node from which it 
originated. 

Figure 2 shows a flow chart of the revised mass correction algorithm for the liquid phase. First, each 
node is checked to see if the addition of the mass error correction term will overfill the node. 

3.1 Overfilling Calculation 

A node is considered overfull if the addition of the mass error correction term might cause the 
pressure or void fraction to change enough to reduce the subsequent time step. 
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FIGURE 2: Detailed Schematic of CATHENA Liquid Mass Conservation Error Correction Algorithm. 
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If the node is filled with a single-phase liquid, the change in pressure of the node (A Pnode) in 
response to the addition of the mass error correction term can be estimated as follows: 

Apf
Pnode r="' a pf 

Pf h 

where the change in mass is represented as a change in node liquid density Apf . The liquid 
isenthalpic compressibility apf la pf lh is an available quantity in the CATHENA steam property 
tables. 

(3) 

If the node is in two-phase flow, the vapour phase can be displaced by the liquid, and the change in 
the node void fraction (Aanode) in response to the addition of mass from the error correction term 
can be estimated using the following expression: 

Aanode 
Apf
— (1 — ag) 
Pf 

where ag is the void fraction, and pf is the density of the liquid. 

Keeping in mind that the error correction term could be positive or negative, the largest allowed 
pressure perturbation as a result of a mass error correction is: 

A Pf < IxP A PTSCI 

where A Pf is the maximum pressure change allowed by adding the mass error correction term, 
A PTsc is the maximum change in pressure allowed without causing the time step controller to 
decrease the time step, and xp is the pressure time controller factor (constant, range: 0 —> 1). 

Similarly, the largest allowed void fraction perturbation as a result of a mass error correction is: 

if the node is being filled, and 

(4) 

(5) 

Aag < max[xa Aarsc, Dag (fill)] (6) 

— Aag > min[—xotAUTSC, —Aag(empty)] (7) 

if the node is being emptied, where Aag is the maximum void fraction change allowed on adding the 
mass error correction term, Aar sc is the maximum change in void fraction allowed without causing 
the time step controller to decrease the time step, xa is the void fraction time controller factor 
(constant, range: 0 —> 1), and Aag (fill/empty) is the change in void fraction needed to fill or empty 
the node respectively. 

The constant factors xp and xa are both set to 0.5. In other words, the values of APf and Aag are 
allowed to come to within a factor of 0.5 of reducing time step through changes in pressure and void 
fraction respectively, as estimated by equations (3) and (4). 

The algorithm implemented in CATHENA also accounts for combinations of Equations (5) and (6) 
or (7). For example, the addition of the mass conservation error term could fill the node by displacing 
the last bit of void within the limits allowed by Equation (6), and then continue to overpressurize it 
within the limits allowed by Equation (5). 
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fl.pf 
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where a8 is the void fraction, and Pf is the density of the liquid. 
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if the node is being filled, and 

- ll.a8 ::::: min[-xall.arsc, -ll.a8 (empty)] 

(4) 

(5) 

(6) 

(7) 

if the node is being emptied, where ll.a8 is the maximum void fraction change allowed on adding the 
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the time step controller to decrease the time step, Xa is the void fraction time controller factor 
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within the limits allowed by Equation (5). 
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3.2 Application of Mass Error Correction Term 

If the node will not overfill, the entire mass error correction term for the thermalhydraulic node being 
examined is applied back into the node. If the node might overfill, as much of the mass error 
correction term as possible is applied to the node. Any liquid mass that cannot be added back into the 
present node within the limits allowed by Equations (5) through (7) is saved for possible later 
re-distribution. 

3.3 Fill and Drain Limits 

As shown in Figure 2, after the mass correction error term has been applied to the maximum extent 
possible in the present node, a calculation is made using Equations (3) through (7) to determine how 
much more could be filled or drained from this node without disturbing the time step controller. 
These upper and lower limits are saved for use by the redistribution algorithm. 

3.4 Mass Redistribution 

Once an attempt has been made to apply the mass error correction term to all nodes, a check is made 
to determine if mass redistribution is required. If it was not possible to add the full mass error 
correction term back into any one of the original nodes without anticipating a pressure excursion, an 
attempt is made to redistribute this mass into neighbouring nodes. 

The algorithm only allows mass to be redistributed into immediately adjacent nodes. In cases where 
two or more nodes are attached to a node, preference is given to nodes that have two-phase. If a 
neighbouring node is a boundary condition, all of the remaining mass is assumed to be redistributed 
to this node. A check is also made to ensure none of the links attaching neighbouring nodes are 
closed due to the presence of large resistances (k's) or closed valves. All redistributions are subject to 
the fill and drain limits previously calculated to avoid potential perturbation of the timestep controller. 

3.5 Residual Mass Error Correction Term 

Finally, as shown in Figure 2, a mass error correction term may still remain which cannot be 
distributed to the immediately adjacent nodes. This residue is placed back in the originating node, 
regardless of the limits established by Equations (3) through (7). 

4 TEST OF MASS CONSERVATION ALGORITHM 

To test the revised mass conservation algorithm, a test problem was needed that involved potentially 
violent phenomena. A simulation of such a test problem may spend a significant fraction of its time 
at the minimum time step, and result in a large number of re - dos. Using the previous mass 
conservation strategy, a potentially significant mass error could accumulated as the mass error 
correction terms are neglected at the minimum time steps and during re - do. The revised mass 
conservation algorithm should correct this mass error. 

6 

21st Annual Conference of the Canadian Nuclear Society 
Toronto, Ontario, Canada I June 11-14, 2000 

3 .2 Application of Mass Error Correction Term 

If the node will not overfill, the entire mass error correction term for the thermalhydraulic node being 
examined is applied back into the node. If the node might overfill, as much of the mass error 
correction term as possible is applied to the node. Any liquid mass that cannot be added back into the 
present node within the limits allowed by Equations (5) through (7) is saved for possible later 
re-distribution. 

3.3 Fill and Drain Limits 

As shown in Figure 2, after the mass correction error term has been applied to the maximum extent 
possible in the present node, a calculation is made using Equations (3) through (7) to determine how 
much more could be filled or drained from this node without disturbing the time step controller. 
These upper and lower limits are saved for use by the redistribution algorithm. 

3 .4 Mass Redistribution 

Once an attempt has been made to apply the mass error correction term to all nodes, a check is made 
to determine if mass redistribution is required. If it was not possible to add the full mass error 
correction term back into any one of the original nodes without anticipating a pressure excursion, an 
attempt is made to redistribute this mass into neighbouring nodes. 

The algorithm only allows mass to be redistributed into immediately adjacent nodes. In cases where 
two or more nodes are attached to a node, preference is given to nodes that have two-phase. If a 
neighbouring node is a boundary condition, all of the remaining mass is assumed to be redistributed 
to this node. A check is also made to ensure none of the links attaching neighbouring nodes are 
closed due to the presence of large resistances (k 's) or closed valves. All redistributions are subject to 
the fill and drain limits previously calculated to avoid potential perturbation of the timestep controller. 

3.5 Residual Mass Error Correction Term 

Finally, as shown in Figure 2, a mass error correction term may still remain which cannot be 
distributed to the immediately adjacent nodes. This residue is placed back in the originating node, 
regardless of the limits established by Equations (3) through (7). 

4 TEST OF MASS CONSERVATION ALGORITHM 

To test the revised mass conservation algorithm, a test problem was needed that involved potentially 
violent phenomena. A simulation of such a test problem may spend a significant fraction of its time 
at the minimum time step, and result in a large number of re-dos. Using the previous mass 
conservation strategy, a potentially significant mass error could accumulated as the mass error 
correction terms are neglected at the minimum time steps and during re-do. The revised mass 
conservation algorithm should correct this mass error. 

6 



21st Annual Conference of the Canadian Nuclear Society 
Toronto, Ontario, Canada / June 11-14, 2000 

A test problem that fits these requirements is a hot horizontal tube refill experiment [2]. Figure 3 
shows a schematic of the experimental facility. A horizontal pipe was electrically heated, and 
subsequently cooled through the introduction of highly subcooled liquid from one end of the pipe. A 
CATHENA model of this experiment was constructed. The condensation and subcooled boiling 
phenomena experienced in the experiment tend to frequently drive the simulation down to the 
minimum time step, and rapid changes in void fraction, pressure, and phase enthalpies cause frequent 
re-dos to occur. CATHENA calculate models were used to determine the relative mass imbalance 
incurred by CATHENA as the simulation proceeds. The relative mass imbalance, RMI, is expressed 
as: 

A Wm' 
RMI = (8) 

MTOT 
where AMcmi is the cumulative mass imbalance and MTOT is the total mass in the system. 

As shown by the solid line in Figure 4, a significant relative mass imbalance was incurred before the 
implementation of the present mass error correction algorithm. After implementation of the mass 
error correction algorithm outlined in Section 3, the RMI is reduced by several orders of magnitude. 
Small momentary residual mass imbalances still occur at isolated points in the simulation as shown 
by the spikes in the broken line in Figure 4, but they do not accumulate as before. These small 
residual spikes may be the result of momentary rounding errors in the finite-difference matrix 
solution or the calculate models used to calculate the actual mass in the system. 

5 SUMMARY AND CONCLUSIONS 

Prior to CATHENA MOD-3.5b/Rev 0, mass was not strictly conserved during re-do and at 
minimum timestep size, potentially leading to errors in fluid inventory during a simulation. A revised 
mass conservation error correction algorithm has been successfully implemented in CATHENA. 
Mass is now conserved at all times, and a redistribution strategy to nearest neighbouring nodes has 
been implemented to ensure numerical stability during simulations containing rapidly varying 
conditions. As shown by the test results, the major source of mass conservation error has been 
corrected. Some residual mass error remains, possibly as a result of numerical rounding errors in the 
matrix solution or the calculate models. These residual errors are negligible however, and do not 
accumulate. 
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A test problem that fits these requirements is a hot horizontal tube refill experiment [2]. Figure 3 
shows a schematic of the experimental facility. A horizontal pipe was electrically heated, and 
subsequently cooled through the introduction of highly subcooled liquid from one end of the pipe. A 
CATHENA model of this experiment was constructed. The condensation and subcooled boiling 
phenomena experienced in the experiment tend to frequently drive the simulation down to the 
minimum time step, and rapid changes in void fraction, pressure, and phase enthalpies cause frequent 
re -dos to occur. CATHENA calculate models were used to determine the relative mass imbalance 
incurred by CATHENA as the simulation proceeds. The relative mass imbalance, RMI, is expressed 
as: 

RMI= !),,.McMI 
Mror 

where !),,.McMI is the cumulative mass imbalance and Mror is the total mass in the system. 

(8) 

As shown by the solid line in Figure 4, a significant relative mass imbalance was incurred before the 
implementation of the present mass error correction algorithm. After implementation of the mass 
error correction algorithm outlined in Section 3, the RMI is reduced by several orders of magnitude. 
Small momentary residual mass imbalances still occur at isolated points in the simulation as shown 
by the spikes in the broken line in Figure 4, but they do not accumulate as before. These small 
residual spikes may be the result of momentary rounding errors in the finite-difference matrix 
solution or the calculate models used to calculate the actual mass in the system. 

5 SUMMARY AND CONCLUSIONS 

Prior to CATHENA MOD-3.5b/Rev 0, mass was not strictly conserved during re-do and at 
minimum timestep size, potentially leading to errors in fluid inventory during a simulation. A revised 
mass conservation error correction algorithm has been successfully implemented in CATHENA. 
Mass is now conserved at all times, and a redistribution strategy to nearest neighbouring nodes has 
been implemented to ensure numerical stability during simulations containing rapidly varying 
conditions. As shown by the test results, the major source of mass conservation error has been 
corrected. Some residual mass error remains, possibly as a result of numerical rounding errors in the 
matrix solution or the calculate models. These residual errors are negligible however, and do not 
accumulate. 

ACKNOWLEDGEMENTS 

The author gratefully acknowledges the advice ofB.N. Hanna in the preparation of this mass 
conservation algorithm, and to T. MacDonald for the preparation of the original test case. 

REFERENCES 

1. B.N. Hanna, "CATHENA: A thermalhydraulic code for CANDU analysis", Nuclear Engineering 
and Design, 180 (1998) 113-131. 1 

2. A. Abdul-Razzak, A.M.C. Chan, and M. Shoukri, "Rewetting of Hot Horizontal Tubes", Nuclear 
Engineering and Design, 138 (1992) 375-388. 7 

7 



21st Annual Conference of the Canadian Nuclear Society 
Toronto, Ontario, Canada / June 11-14, 2000 

*PRESSURE CONTROL 

0 

T 

HEAD 

TANK 

TURBINE 
FLOWMETER 

LEXAN 

PNEUMATICALLY OPERATED 

FAST ACTING VALVES 

THROTTLING 

VALVE 

BYPASS LINEA,

LEXAN, r 

3 m ZIRCALOY TUBE 

LEXAN 
GAMMA 
DENSITOMETER 

POWER SUPPLY 

FIGURE 3: Schematic of Refill Test Loop. 

P,T 

LEXAN 

DRAIN 

8 

21st Annual Conference of the Canadian Nuclear Society 
Toronto, Ontario, Canada I June 11-14, 2000 

T 

HEAD 

TANK 
¥ 

TURBINE 
FLOWMETER 

\ 

PNEUMATICALLY OPERATED 

FAST ACTING VALVES 

BYPASS LINE.lii\. 

LEXAN:1' 

3 m ZIRCALOY TUBE P,T 

t 
► 1 9 

1-----------ll!!ll------------l t 
GAMMA ' LEXAN 

LEXAN __. 

THROTTLING LEXAN DENSITOMETER 

VALVE 

POWER SUPPLY 

FIGURE 3: Schematic of Refill Test Loop. 

8 

DRAIN 



21st Annual Conference of the Canadian Nuclear Society 
Toronto, Ontario, Canada / June 11-14, 2000 

0.005 

Before
After --- 

0.004 

R
el

at
iv

e 
M

as
s 

Im
ba

la
nc

e 
[R

M
I] 

0.003 

0.002 

0.001 

0.000 

-0.001  
0 

1.„4tioLliaLL 11 -di Lf.i la 
; 

1,114iLL*44....41,14 

5 10 15 
Time [s] 

20 25 30 

FIGURE 4: Mass Imbalance, Before and After Implementation of New Mass Conservation Error 
Correction Algorithm. 

9 

21st Annual Conference of the Canadian Nuclear Society 
Toronto, Ontario, Canada I June 11-14, 2000 

0.005 .-------.------------.-----......-------,.--------, 

0.004 

-
~ 0.003 
~ 
Q) 
(.) 
C 
ctl 
cii 
.0 
E 0.002 
Cl) 
Cl) 

ctl 
~ 
Q) 
> :;::::; 
ctl 0.001 Q) 

0::: 

-0.001 
0 5 10 15 

Time [s] 
20 

Before -
After ---

25 30 

FIGURE 4: Mass Imbalance, Before and After Implementation of New Mass Conservation Error 
Correction Algorithm. 

9 


