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Abstract 

In order to explain the anisotropy of delayed hydride cracking (DHC) behavior in the longitudinal 

and in radial direction in Zr-2.5%Nb pressure tube materials, DHC tests using compact tension 

(CT) and cantilever beam (CB) specimens and tensile tests using small specimens with a gage 

length of about 2 mm have been carried out, and the texture change in the DHC surfaces have been 

examined. It has been found that the deformation mechanisms operating during the cracking 

process were significantly different in both specimens. The (102) twinning system operated when 

a DHC crack propagated in the longitudinal direction and both the (112-1) and (10 2) twinning 

systems operated when the DHC crack propagated in the radial direction. The tensile results 

showed that there is anisotropy of the tensile behavior and the strength in the radial direction is 

minimum in the range of 100-400°C. This behavior seems to be due to the anisotropy of texture. 

Therefore, it can be concluded that the differences in crack propagation behavior between CT and 

CB specimens is due to the differences in deformation mechanisms which are resulted from the 

anisotropy of the texture. 
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1. Introduction 

It is reported that there is anisotropic DHC behavior in the longitudinal and radial direction in 

curved compact tension (CCT) and cantilever beam (CB) specimen, respectively [1, 2]. The crack 

growth rate in the longitudinal direction is two times faster than that of the radial direction and the 

threshold stress intensity factor for DHC (Km) initiation in the longitudinal direction is smaller by 

about 50% than that of the radial direction in the compact tension (CT) and cantilever beam (CB) 

specimen, as shown in Fig. 1 [1] and Fig. 2 [2-7]. Although the cracking planes and the basal pole 

components are identical in both specimens, except for the crack growth directions being different 

in both specimens, there is anisotropic DHC behavior. This suggests that there is an effect of crack 

growth direction on anisotropic DHC behavior in pressure tube materials. 

The effect of texture on Km has been investigated using a Zr-2.5%Nb plate and this effect has 

been explained properly by the rule of mixture using the basal pole component (F) in the loading 

direction as the volume fraction of a brittle hydride and the rest of it (1-F) as the volume fraction of 

a ductile matrix [3]. Although the explanation may be different, a similar suggestion has been 

provided by Coleman et al. [8]. 

There has been no systematic investigation to identify the origin of anisotropic DHC behavior, 

and therefore, the cracking surface and tensile properties are examined and analyzed in this study. 

2. Experimental 

DHC tests were performed using CT and CB specimens with 60ppm hydrogen, as shown in 

Fig. 3. The CT specimens were tested using a constant load creep tester. The CB specimens were 

tested using a computer-controlled tester, which used acoustic emissions (AE) to detect cracking. 

Both cracking planes were examined by XRD to determine the texture change after cracking due to 

DHC. The change in texture during DHC was confirmed and the change in the basal pole 

components was calculated. The normalized inverse pole figures are constructed again to show the 

change in texture and the deformation mechanism operated clearly. 

The strength and deformation behavior in the radial, longitudinal, and transverse direction were 

investigated using small tensile specimen with a gage length about 2 mm long, as shown in Fig. 4. 

The specimens were machined by electro deposit machining (EDM) and the EDM surface of 

2 

21 st Annual Conference of the Canadian Nuclear Society 
Toronto, Ontario, Canada/ June 11-14, 2000 

1. Introduction 

It is reported that there is anisotropic DHC behavior in the longitudinal and radial direction in 

curved compact tension (CCT) and cantilever beam (CB) specimen, respectively [l, 2]. The crack 

growth rate in the longitudinal direction is two times faster than that of the radial direction and the 

threshold stress intensity factor for DHC (Krn) initiation in the longitudinal direction is smaller by 

about 50% than that of the radial direction in the compact tension (CT) and cantilever beam (CB) 

specimen, as shown in Fig. 1 [1] and Fig. 2 [2-7]. Although the cracking planes and the basal pole 

components are identical in both specimens, except for the crack growth directions being different 

in both specimens, there is anisotropic DHC behavior. This suggests that there is an effect of crack 

growth direction on anisotropic DHC behavior in pressure tube materials. 

The effect of texture on Krn has been investigated using a Zr-2.5%Nb plate and this effect has 

been explained properly by the rule of mixture using the basal pole component (F) in the loading 

direction as the volume fraction of a brittle hydride and the rest of it (1-F) as the volume fraction of 

a ductile matrix [3]. Although the explanation may be different, a similar suggestion has been 

provided by Coleman et al. [8]. 

There has been no systematic investigation to identify the origin of anisotropic DHC behavior, 

and therefore, the cracking surface and tensile properties are examined and analyzed in this study. 

2. Experimental 

DHC tests were performed using CT and CB specimens with 60ppm hydrogen, as shown in 

Fig. 3. The CT specimens were tested using a constant load creep tester. The CB specimens were 

tested using a computer-controlled tester, which used acoustic emissions (AE) to detect cracking. 

Both cracking planes were examined by XRD to determine the texture change after cracking due to 

DHC. The change in texture during DHC was confirmed and the change in the basal pole 

components was calculated. The normalized inverse pole figures are constructed again to show the 

change in texture and the deformation mechanism operated clearly. 

The strength and deformation behavior in the radial, longitudinal, and transverse direction were 

investigated using small tensile specimen with a gage length about 2 mm long, as shown in Fig. 4. 

The specimens were machined by electro deposit machining (EDM) and the EDM surface of 

2 



21° Annual Conference of the Canadian Nuclear Society 
Toronto, Ontario, Canada / June 11-14, 2000 

about 0.1 mm was removed by grinding. The tensile tests were carried out in the range of RT to 

560°C and the strain rate was 5x10/s. The displacement was used as strain during the tensile test. 

3. Results and Discussion 

The texture of a CANDU pressure tube is shown in Fig. 5, using inverse pole figures. The basal 

plane normals of the zirconium crystals are aligned in the transverse direction, and the prism plane 

normals are aligned in the longitudinal direction. These pole figures show how grain orientations 

are changed along the radial and longitudinal direction in CB and CT specimens during cracking. 

The basal pole components at the fracture surfaces were decreased by about 10% and 20% after 

cracking in the radial and longitudinal direction, respectively, as shown in Fig. 6 and 7. This shows 

that there has been certain plastic deformation during cracking, even due to DHC. 

It has been found that the deformation mechanisms operating during the cracking process were 

different in both directions, as shown in Fig. 6 c) and 7 c). The (102) twinning system operated 

when the DHC crack propagated in the longitudinal direction in the CT specimens, and both the 

(111  1) and (1012) twinning systems operated when the DHC crack propagated in the radial 

direction in the CB specimens. These phenomena can be explained using Fig. 5. If the DHC 

process proceeds under the plane strain condition and there is plastic deformation during DHC, 

then the plastic strain may be existed only in the transverse and longitudinal direction in the CT 

specimens, and in the transverse and the radial direction in the CB specimens. Therefore, only the 

(1012) twinning system can operate in the CT specimens, referring to Fig. 5 b) and c), while both 

the (112-1) and (1012) twinning systems can operate in the CB specimens, referring to Fig. 5 a) 

and b). 

The yield and tensile strength are compared together in Fig. 8 and 9, respectively. The yield 

strength in the radial direction is lowest in the range of 100-400°C, whereas the tensile strength is 

lowest in the entire range of the test. 

The stress-strain curves at about 170-250°C in the radial, longitudinal, and transverse direction 

are shown in Fig. 10. The work hardening behavior in the radial direction is different from those of 

the longitudinal and transverse direction, and the total elongation in the radial direction is minimum. 

These differences may be due to the anisotropy of the texture, as explained above. 

These observations may be summarized as follows: 1) there is certain plastic deformation in the 

DHC surface, 2) the operating deformation mechanisms are different in the radial and longitudinal 
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direction in the CB and CT specimens, respectively, 3) the strength and work hardening behavior 

are different. All of these seem to be due to the anisotropy of texture, and may change the DHC 

behavior. 

The anisotropy of the deformation behavior may cause a different plastic behavior during DHC. 

The grain orientations vary significantly along the radial direction, compared to along the 

longitudinal and transverse direction. This grain distribution in the radial direction may allow 

relatively isotropic deformation behavior. Therefore, the resistance to DHC may be increased in the 

radial direction. It can be concluded that the difference in crack propagation behavior between the 

CT and the CB specimens is due to a difference in the grain orientation and the deformation 

mechanisms in the cracking direction, which result from the difference in texture. 

Therefore, in order to interpret and predict the DHC crack growth behavior, the strength, work 

hardening behavior and texture in the crack propagation direction should be considered in addition 

to the strength in the loading direction and the basal pole component in the cracking plane. 

4. Conclusions 

1) The origin of the anisotropy of the DHC behavior according to the cracking direction is the 

anisotropy of the texture and deformation mechanisms operating during the DHC process. 

2) Only the (1012) twinning system operated when the DHC crack propagated in the longitudinal 

direction and both the (112-1) and (1012) twinning system operated when the DHC crack 

propagated in the radial direction. 

3) The strength, work hardening behavior and texture in the crack propagation direction should be 

considered to properly interpret and predict the DHC behavior, in addition to the strength in the 

loading direction and the basal pole component in the cracking plane. 
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a) cantilever beam specimen b) curved compact tension specimen 
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Fig. 3. Schematic illustration of a) cantilever beam (CB) and b) curved compact tension (CCT) 
specimens [1]. 
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specimens [1 ]. 
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Fig. 10. Comparison of stress-strain curves for radial, transverse, and longitudinal direction 
in Zr-2.5%Nb pressure tube materials at room temperature. 
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Fig. 10. Comparison of stress-strain curves for radial, transverse, and longitudinal direction 
in Zr-2.5%Nb pressure tube materials at room temperature. 
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