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Abstract 

The classical lower bound theorem in plasticity states that the load required to create 

equilibrium stresses in a structure that are below yield will always be less than or equal to 

the collapse load. Recent advances in determination of lower bound limit loads involve 

repeated elastic analysis after systematic modification of elastic moduli. The intention is 

to obtain lower bound limit loads from stress fields that would progressively approach a 

state similar to one at plastic limit. The gradual transformation of statically admissible 

stress fields from elastic to limit state can be compared to various creep distributions 

corresponding to power-law creep indices ranging from one to infinity. This paper 

attempts to establish such one-to-one relation by using stress fields obtained from 

repeated elastic analyses. 

1. Introduction 

Limit analysis has been recognized by the ASME Code, Section III, NB-3228 [1] as one 

of the methods for designing pressure components. The advantage of limit analysis lies in 

the fact that it dispenses with conventional stress classification procedures and hence the 

uncertainty in designating whether a particular kind of stress is primary or secondary. 

Inelastic finite element analysis still remains as one of the reliable methods for 

determining limit loads, although closed form and lower bound solutions are available for 
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simple configurations. Over the last decade, many researchers [2-5] have attempted to 

determine lower bound limit loads using stress fields based on linear elastic finite 

element analyses (LEFEA). These methods were premised on the fact that systematic 

modification of elastic moduli coupled with repeated elastic analyses would cause stress 

redistribution such that the value of maximum stress would be lower than the one during 

previous elastic analysis. It should be noted that any finite element stress field is statically 

admissible as long as the maximum equivalent stress is below the yield stress value. The 

structure by virtue of its geometry, loading and boundary conditions redistributes the 

stresses in a manner that is in tune with the nature of the structure. Application of these 

methods to a large number of isotropic component configurations demonstrated 

consistently good limit load estimates. Recently Mangalaramanan et. al [6] and, 

Reinhardt and Mangalaramanan [7] extended the modified moduli method for 

determining limit loads of orthotropic components and tubesheets. The limit load 

estimates compared well with those obtained using inelastic finite element analysis. 

Despite the success of the modified elastic moduli methods, no systematic study has thus 

far been performed for verifying whether changing elastic moduli does indeed 

redistribute the stress field in a manner conducive for obtaining better lower bound limit 

loads with progressive iterations. The question of quantifying the effect of elastic moduli 

change on the stress field obtained by subsequent elastic analysis has not been answered 

yet. This paper attempts to show the possibility of establishing a one-to-one 

correspondence between the stationary stress distributions obtained by power-law creep 

and those obtained by means of modified moduli method. Standard engineering problems 

considered to demonstrate this are a beam subjected to bending and a thick cylinder under 

internal pressure. 

2. Pressure Component Design based on Stress Classification and Limit Analysis: 

Knowledge of post-yield reserve strength of structures has drawn the attention of analysts 

over the past many decades. The ASME code also recognizes this aspect, thereby 

allowing designers to use limit analysis or elastic-plastic analysis as an alternative to 

conventional stress classification based component design [1]. Stress classification 
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methods of pressure vessel design evolved during a time when fmite element analysis and 

computing power were in their infancy. The idea of classifying stresses as membrane and 

bending based on free-body diagrams and beam on elastic foundation theory was elegant 

and offered conceptual insight on the problem, albeit being limited in scope of 

application. With advancement in computer hardware and software, commercial 

programs such as ANSYS [8] have implemented options for linearizing fmite element 

stresses. However, there are many instances where the fundamental question of whether 

to classify a particular stress as primary stands to be debated [9]. The orientation of the 

stress class lines also becomes a deciding factor on the magnitude of finite element 

analysis based linearized stresses. There may be critical locations in components where it 

would be practically impossible to define a stress linearization path that would offer 

meaningful results (Figures 1 and 2). Conventional methods also do not account for the 

significant amount of post-yield reserve strength, especially in multiply redundant 

structures. Therefore the idea of determining limit loads and thereby coming up with the 

maximum possible design load as per ASME Code Section III, NB-3228 [1] offers 

advantages to designers in terms of cost savings and ease of analysis. 

The downside of performing limit analysis, however, is the requirement of computer 

software that would be capable of performing non-linear analysis, the run-time and 

memory requirements. The advantage offered by ever increasing speed and memory of 

computers is somewhat offset by the inherent "desire" of the analyst to go for more 

detailed finite element models, higher order elements and finer mesh sizes. This on one 

side, non-linear analysis is still viewed with skepticism by "traditional" engineers, who 

feel more "at home" with stress classification procedures based on linear elastic analysis. 

The main reasons are because linear elastic finite element codes have been around for 

long, are easily bench marked and therefore chances of analysis errors are less. An 

independent limit analysis method based on LEFEA would therefore be an alternative at 

least for bench marking non-linear limit analysis results. Over the last decade, a number 

of researchers have endeavored to develop such procedures. Marriott [2], and Mackenzie 

et. al [4] have developed methods to determine limit loads using the classical lower 

bound limit load theorem. Lower bound limit loads are obtained by linearly scaling a set 
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of LEFEA stress distributions such that the maximum von Mises equivalent stress is 

equal to the yield stress. Seshadri's [3] r-node method uses two LEFEA for determining 

reference stress [10] in components by identifying load-controlled locations called as 

redistribution nodes (r-nodes). The reference stress obtained using this method is linearly 

scaled to yield stress value for obtaining limit load. Since the aforementioned methods 

are based on well-established engineering concepts such as "classical lower bound 

theorem" and "reference stress," they not only offer the robustness of elastic analysis but 

also the advantage of limit analysis. 

The methods described above attempt to produce redistributed stress fields by 

systematically modifying the elastic moduli. Artificially reducing the elastic properties of 

highly stressed regions (and vice-versa) ensures that these regions would be stressed less 

during the subsequent elastic analysis. The moduli modification method widely 

recognized as appropriate for stress redistribution is given by [3]: 

Es = Eo[
a

orb
] 

(1) 
C r eqv

where Eo is the original elastic modulus, 6 c„.1, is some arbitrary stress value, crap, is the 

von-Mises equivalent stress and Es is the modified elastic modulus. The elastic modulus 

of every element is modified in inverse proportion to its equivalent stress and elastic 

analysis is subsequently performed. This results in stress redistribution which is akin (or 

at least that is what is intended) to what happens during inelastic analysis. The elastic 

stress fields obtained can be made to obey the stipulations of classical lower bound limit 

analysis. The limit load procedures based on the above theory were found to provide 

good limit load estimates [3-5]. Mackenzie et. al, have provided an exhaustive review of 

elastic modui modification procedures [11]. This paper attempts to quantify the behavior 

of elastic stress distribution consequent to moduli modification by establishing 

correspondence with power-law creep, for standard component configurations. 
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3. Limitations of Elastic Analysis Based Methods 

The simplified limit analysis methods, however, have some limitations. Investigations [5] 

have revealed that modifying the elastic moduli and carrying out multiple linear elastic 

analyses need not necessarily redistribute the stress fields as in inelastic case. Sensitive 

structures such as non-symmetric plates and thin shells can exhibit poor convergence, as 

shown in Figures 3 and 4. Mangalaramanan and Seshadri [12] introduced an elastic 

moduli modification factor (EMMF) in an attempt to improve convergence. Using this 

procedure, the elastic moduli of an element, E, can be modified as follows: 

E =E[ Cr" b
S 

iq0  
offeq,, 

(2) 

While a lower value of q effectively reduce the erratic fluctuations, it can increase the 

number of elastic analyses necessary to approach limit-state. It becomes important for an 

analyst to know the optimum value of q that would be necessary for smooth convergence 

to limit state and at the same time limit the number of iterations to some reasonable 

value. This, of course, depends on the type of problem analyzed. 

While the difficulty in establishing a rational procedure for determining q before hand is 

accepted, it would be worthwhile to investigate whether the stress redistribution because 

of elastic analyses follows inelastic trend. The forthcoming sections investigate this 

aspect. 

One other problem with repeated elastic iterations is that achieving a limit type of stress 

distribution may not always be possible. With a number of iterations, the difference 

between the maximum and minimum elastic moduli in a given elastic analysis can be 

large enough to render the elastic stiffness matrix ill conditioned. 
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4. Stress Redistribution in a Beam subjected to Pure Bending based on Elastic 

Moduli Modification Process: 

A beam of rectangular cross-section and thickness t, subjected to pure bending as shown 

in Figure 5 is considered. The bending moment, M , in the beam can be expressed in 

terms of the equivalent stress as: 

t/2 

M= f0 -ZdZ 

-t/2 

(3) 

Throughout this paper, the superscripts I, II, III, ... denote the first, second, third linear 

elastic analyses and so on. The equivalent stress, denoted by a , in case of pure bending 

is the stress in axial direction. 

4.1 First linear elastic analysis: 

The stresses can be expressed in terms of the strains as o-/ = EI EI , where the through 

thickness distribution of axial strain can be expressed in terms of the curvature as 

EI = KI  z. Equation (3) can therefore be written as: 

t/2 t 3 
114- = 2 sEt r izzdz =  

6 
(4) 

0 

Noting the relation between the stress, strain and curvature, the above equation becomes: 

Mz = 
I 

where the denominator I stands for the geometric moment of inertia. 

4.2 Second linear elastic analysis: 

(5) 

The purpose of the second and subsequent linear elastic analyses is to redistribute the 

elastic stress fields in order to simulate the non-linear post-yield nature. This is achieved 

by systematically modifying the elastic moduli followed by an elastic analysis. 
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Since the bending moment is constant, it can be expressed in terms of the second elastic 

stress distribution as: 

+t/2 

M = lo-Hzdz (6) 
-t/2 

=Etre , and ell _ where .Ho  — kH z . 

Therefore, the moment becomes 

+t/2 
M = ikHE// z 2dz

-t/2 

(7) 

The second elastic analysis elastic moduli, EH , can be obtained from the first elastic 

analysis stress distribution as: 

1 ]q 
EH =  E l[  b arb 

a
l (8) 

Substituting equations (5) and (8) into equation (7) and after performing the necessary 

integration, the curvature corresponding to the second elastic analysis is obtained as: 

k" =  (3 — q)M(q+1) 
(9) 

2E1 krb y p[ t 1 3 q)
2 

By invoking the stress-strain and strain-curvature relationships on equation (9), the stress 

distribution corresponding to second elastic analysis can be obtained asl: 

6 
H = (3 — q)z(1-q)M (10) 

t 
i  (3-q) 

1 Corollary: 
Imposing q =1, equation (10) becomes: 

2[—

If 4M 

2 

a = 
t 2 

(F.1) 

which is a constant through thickness stress distribution, independent of z , and hence limit type. 
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4.3 Third linear elastic analysis: 

The moment equation for the third elastic analysis is given by: 

+t / 2 
= ik/H E ffi z zdz  (11) 

-t / 2 

The elastic moduli, EH', can be obtained as follows: 

Elll = Ell barb 
ir 

(12) 
a ll 

Substituting equation (8) in equation (12), we get 

[0-!ll.bilq [0-11 EI 

arb 

[2( t)(3-q)ir 

2) 
EH' = (13) 

(3 M(q+r) zq 

which results in equation (11) to become: 

+r/ 
[Cr!mbil q ki:j r [2(t 

kfilE/ 
2) (31 T

M = Z2 dz (14) f (3 - m(q+r)zq-(1-q)
-t/2 

The radius of curvature, km , can be obtained by integrating equation (14): 

Mg+r+1 (3 — [3 — q + r (1 — q)] 
kill = (15) 

2E [o rbliq kfrb ]r [2(t / 2)(3-g) Jr [t / 213-q+r(1-q)]

Since EH! = k III z , and CHI = EH" EH" 
, the expression for stress can be derived from 

equation (15) as: 

Hi [2 + (1— q)(1 — r)}z(1-q)(1-r) = 
2(t / 2) [2+(1- q)(1- r)] M

(16) 

The results obtained from equations (5), (10) and (16) can be summarized as follows: 

61 
,,-

= z (5) 

8 

4.3 Third linear elastic analysis: 

The moment equation for the third elastic analysis is given by: 

2/

2/

2
t

t

IIIIII dzzEkM     (11) 

The elastic moduli, IIIE , can be obtained as follows: 

r

II

II
arbIIIII EE     (12) 

Substituting equation (8) in equation (12), we get 

)1()(

3

3

2
2

qrqrqr

rq
rII

arb

qI
arb

I

III

zMq

t
IE

E    (13) 

which results in equation (11) to become: 

2/

2/

2
)1()(

)3(

)3(

2/2t

t
qrqrqr

rqrII
arb

qI
arb

IIII

dzz
zMq

tIEk
M   (14) 

The radius of curvature, IIIk , can be obtained by integrating equation (14): 

)1(3)3(

1

2/)2/(22

)1(3)3(
qrqrqrII

arb

qI
arb

I

rrq
III

ttIE

qrqqM
k   (15) 

Since zk IIIIII , and IIIIIIIII E , the expression for stress can be derived from 

equation (15) as: 

M
t

zrq
rq

rq
III

)1)(1(2

)1)(1(

)2/(2

)1)(1(2
   (16) 

The results obtained from equations (5), (10) and (16) can be summarized as follows: 

z
t

MI
)1(2

2
2

)1(2
    (5) 

21 st Annual Conference of the Canadian Nuclear Society 
Toronto, Ontario, Canada I June 11 - 14, 2000 

+ 

= f 

= 
( - ) + + -

+ [a ] [a ] [ ( ) - ] 
= f-----+--+ -_--

+ + [ - + - ] = ----:-----:,.......,,..-----::---:--------:------
[a ] [a ] [ - ] [ ][ - + - l 

e = a = e 

[ + - ] - -
a=-----,---------,--[+ - - l 

+ a = 

8 



215tAnnual Conference of the Canadian Nuclear Society 
Toronto, Ontario, Canada /June 11 - 14, 2000 

a ll 
= 1V1 z 
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and so on. 

4.4. Relation between moduli modification and power-law creep for the beam 

The stress-strain rate relationship postulated by power-law creep is of the form 
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12 nII

t

z

n

n
   (20) 
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The term o-rna„ is the maximum stress corresponding to the first linear elastic analysis. 

Equation (20) is the same as the one available in standard textbooks for stationary stress 

distributions based on power-law creep (page 23 of reference [13]). 

4.5 Effect of Transverse Shear 

The type of loading considered in the aforementioned discussions was pure bending. 

However, transverse loading and multiple plastic zones commonly occur in real life 

structures and is therefore of practical importance. The tendency of transverse shear is to 

cause the moment to vary along the neutral axis of the beam. For the case of pure 

bending, the moment is constant across the neutral axis and hence the stress distribution 

given by equation (F.1) is one at limit. However, this is not true for problems with 

transverse loading. The second linear elastic analysis can result in an equivalent stress 

distribution that is uniform across the thickness for dominant bending, but may not 

necessarily be one at limit. Additional elastic analyses are required to cause the stresses 

to redistribute along the neutral axis. Unlike in pure bending, the stress distribution is no 

longer uniaxial because of the presence of shear. The von Mises equivalent stress 

therefore becomes: 

(r e = lI CS-x2 +31-x2y 

For net section collapse, 

(21) 

cre = cry (22) 

where a y is the yield strength of the material. For dominant bending since the magnitude 

of shear is negligible as compared to the normal stress, equations (5), (10), (16) and (17) 

are assumed to hold good. It would be of interest to study the change in shear stress 

distribution with repeated elastic analyses. The force required to cause shear stress in a 

small element of the beam (Figure 6) can be expressed as: 

t12 

OF = fAo-dil 
zi

(23) 
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where Y  is the yield strength of the material. For dominant bending since the magnitude 

of shear is negligible as compared to the normal stress, equations (5), (10), (16) and (17) 

are assumed to hold good. It would be of interest to study the change in shear stress 

distribution with repeated elastic analyses. The force required to cause shear stress in a 

small element of the beam (Figure 6) can be expressed as:

2/

1

t

z

dAF     (23) 
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where dA = dz for unit width of the beam. Equation (23) is available in all standard text 

books in engineering mechanics [14]. The factor Aa can be obtained from any of the 

equations (5), (10), (16) and (17). For the sake of illustration equation (10) is considered: 

(3 - q)z(1-q) AM 
Aa =  (24) 

i(3 

-q)
2[ t

2 

This results in equation (23) to become 

AF = (3 _ q )Aivi tf 0_0
z dz i (3 -q) (25) 

The shear stress can be determined from equation (25) as 

, AF  -  
(2-q) 

T = 1 M  =  3  [li " 1[(-) 4 2-q)  (26) 
17 Az->o Ax• (3-q)

q  m  2 - 
Ax->0 & 

2[1 (2 - q) 

for 
0<z1

 
t

2 

Equation (26) can be rewritten as2: 

- z2 = x3, (3-q) 2 ) 1 
2(2 - q t

f 2] 

(27) 

where V is the shear force. Equation (19) can be applied on equation (27) for obtaining 

the shear stress in terms of power-law creep index. 

2 Corollary: 
When q = 0, we get the well-known parabolic shear stress distribution given by 

I./ = 6V [r t ) 2 _ _2 ] 

xy t3
 2) zi 

Substituting q =1 leads to a linear limit shear distribution given by 

T
H 4V [ t

= — - - Z 
xY t 2 2 1
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where dzdA  for unit width of the beam. Equation (23) is available in all standard text 

books in engineering mechanics [14]. The factor  can be obtained from any of the 

equations (5), (10), (16) and (17). For the sake of illustration equation (10) is considered: 

)3(

)1(

2
2

3
q

q

t

Mzq
   (24) 

This results in equation (23) to become 

2/
)1(

)3(

1

2
2

3 t

z

q
q

dzz
t

Mq
F    (25) 

The shear stress can be determined from equation (25) as 

)2(
1

)2(

0)3(0 2
lim

)2(
2

2

3
lim q

q

xqx
xy z

t

x

M

q
t

q

x

F
 (26) 

for
2

0 1

t
z .

Equation (26) can be rewritten as2:

)2(
1

)2(

)3( 2

2
22

)3( q
q

qxy z
t

t
q

Vq
  (27) 

where V  is the shear force. Equation (19) can be applied on equation (27) for obtaining 

the shear stress in terms of power-law creep index. 

                                                          
2 Corollary: 
When ,0q  we get the well-known parabolic shear stress distribution given by 

2
1

2

3 2

6
z

t

t

VI
xy

Substituting 1q  leads to a linear limit shear distribution given by 

12 2

4
z

t

t

VII
xy
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In situations where shear is dominant, assumption of a constant through thickness axial 

stress postulated by equation (F.1) violates the necessary condition given by equation 

(22). Equations (10), (15), (16) and (27) no longer hold good as there is no assurance that 

q =1 in equation (10) would lead to limit type stress distribution. Figure 7 shows the 

effect of the value of q on the stress distributions in the beam. The figure indicates that 

problems involving significant shear require a value of q <1 for good lower bound limit 

loads. Two numerical examples are considered in order to study the effect of transverse 

shear. 

A rectangular plate partially fixed and partially simply supported, as shown in Figure 3, is 

considered to analyze the effect of shear. The configuration is chosen for studying the 

dominant shear effect. The Young's modulus and the yield strength of the material are 

assumed as 30000 ksi and 30000 psi, respectively. The problem is analyzed for two 

values of Poisson's ratio (v=0.3 and 0.49) and two values of elastic moduli modification 

factors (q=0.25 and 1). The lower bound limit loads due to elastic iterations and inelastic 

limit load are also shown in Figure 3. It can be seen that the elastic moduli modification 

factor of q=1 leads to severe oscillations in the limit load estimates. However, using 

q=0.25 shows good convergence characteristics. 

The next problem considered is a barrel shaped beam fixed on both ends and subjected to 

uniform pressure. The Young's modulus and yield stress values are the same as for the 

previous case. This problem has been chosen to demonstrate that while the second linear 

elastic analysis causes a uniform through thickness stress redistribution, subsequent 

elastic analyses are necessary for redistribution along neutral axis. The component 

configuration and the stress distributions are shown in Figure 8. 
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elastic analysis causes a uniform through thickness stress redistribution, subsequent 
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configuration and the stress distributions are shown in Figure 8.
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5. Stress Redistribution in a Cylinder subjected to Uniform Internal Pressure under 

Plane Strain Conditions 

A cylinder of internal and external radii of r and ro , respectively, as shown in Figure 9 

is considered. The cylinder is subjected to uniform internal pressure, p , and is assumed 

to be long enough for plane strain conditions to hold good. The following equations 

apply: 

The von Mises equivalent stress is given by: 

ae = 2 (a° )2

 2
1 

v 2 

where a„ o-  and a z are respectively the radial, hoop and axial stresses. 

(28) 

Postulation of plane strain condition leads to the following relationship between the stress 

components: 

= 1 -v (0; + a9) (29) 

Equation (29) and the assumption of plastic incompressibility ( v =1/ 2) reduces equation 

(28) to: 

= (0-6+ ) e 2 
(30) 

The expression for equivalent strain can be obtained from standard text books (reference 

[10], page 50, equation 3.1a) as: 

e 

2 C1
= < r < ro (31) 

r2

5.1 First linear elastic analysis 

The stress-strain relationship is expressed as: 

fr./ Ey 
e e (32) 

Substituting equations (30) and (31) in (32), the following relation is obtained: 
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where r ,  and z  are respectively the radial, hoop and axial stresses. 

Postulation of plane strain condition leads to the following relationship between the stress 

components:
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1
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Equation (29) and the assumption of plastic incompressibility ( 2/1 ) reduces equation 

(28) to: 

re 2

3
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The expression for equivalent strain can be obtained from standard text books (reference 

[10], page 50, equation 3.1a) as: 

2
1

3

2

r

C
e oi rrr   (31) 

5.1 First linear elastic analysis 

The stress-strain relationship is expressed as: 

I
e

II
e E      (32) 

Substituting equations (30) and (31) in (32), the following relation is obtained: 
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61 
1 

=  
4

E 
IC 

3 r 2

The equilibrium equation for a thick cylinder is given by: 

do; = 6 6, — a,. 

dr 

Equation (33) can be substituted into equation (34) leading to 

du,/ 4 EI  C 1

dr 3 r 2

Integration of equation (35) gives the radial stress 

—2 E/ 
ar 

3 r2 

= +C2

The following boundary conditions apply: 

at r =r i ; o -  = —p 

r= r o ; 6 1 =0 

(33) 

(34) 

(35) 

(36) 

(37) 

2 2 3p r i r o
resulting in C1 = 

I 2 2 • 2E re —r 

The equivalent stress can be calculated from equations (30), (34), (35) and C1 as3: 

vsp r  2 ro2 

= 
2 2 2 

r r o

5.2 Second linear elastic analysis 

(38) 

The stress-strain relationship corresponding to the second linear elastic analysis 

can be simplified as: 

3 Corollary: 

/ VSpr 2
cr

o
e is maximum at r =r i . Therefore, ko; )max = 

2 2 • 
r s, — 

H EH H a e = Ee (39) 

H 4 H 
r 2 o-6, — o-, = — E (40) 

3 

14 

2
1

3

4

r

C
E II

r
I     (33) 

The equilibrium equation for a thick cylinder is given by: 

rdr

d rr     (34) 

Equation (33) can be substituted into equation (34) leading to 

2
1

3

4

r

C
E

dr

d I
I
r     (35) 

Integration of equation (35) gives the radial stress 

22
1

3

2
C

r

CE I
I
r     (36) 

The following boundary conditions apply: 

  at  irr ; pI
r

  ;orr   0I
r      (37) 

resulting in 
22

22

1 2

3

io

oi
I rr

rr

E

p
C .

The equivalent stress can be calculated from equations (30), (34), (35) and 1C  as3:

22

22

2

3

io

oiI
e rr

rr

r

p
    (38) 

5.2 Second linear elastic analysis 

The stress-strain relationship corresponding to the second linear elastic analysis 

II
e

IIII
e E      (39) 

can be simplified as: 

2
1

3

4

r

C
E IIII

r
II     (40) 

                                                          
3 Corollary: 

I
e  is maximum at irr . Therefore, 

22

2

max

3

io

oI
e rr

pr
.
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The second linear elastic analysis moduli is defined as follows: 

From equations (30) and (38), 

b arb EH  E

al 

2 2 14 

EH = ro 
 cr   r

2q 
.‘ h arb 2 2 

pro ri

which, for the sake of simplicity, can be expressed as 

EH = 
Kr 2q

Equation (43) is substituted in equation (40), leading to 

H 4a-, = KC r2(q-1)3

(41) 

(42) 

(43) 

(44) 

Equation (44) when substituted into equation (34) results in the following expression: 

duff 4 
= KC1r2(4-1)-1 (45) 

dr 3 

The above equation is integrated for obtaining the radial stress: 

2q-2 

Crr
ll 

= —
4

KC1 + C2 
3 q 2

(46) 

The arbitrary constant is obtained by applying the boundary conditions given by equation 

(37), resulting in: 

3 [2p(1— 1 
ro2(1-q) r 2(1-q) 

= 4  K 
2(1-q) 20_0 (47) 

From equations (30), (44) and (47) the expression for equivalent stress is evaluated4: 

2(1—q) 2(1—q) lSp — 0- e A— q) ro 
r 

08) 
0-q) 20-q) Y2(1 4) r2o 

4 Corollary: 

Just as in the case of the beam, substituting q = 0 in equation (48) leads to the linear elastic solution. 

When q =1, the following equation (48) becomes 

limo "  = lim 
Jp(1 q) ro2(1—q) r 2(1—q) p 

q->1 q->1 r2(1-4) 
—  

20 
- Y.2(1

-q) -q) 2 in(r 
0  

o ) (F.2) 

using L'Hospital's rule. The above equation corresponds to limit stress distribution because when (Ye

reaches the yield value, the applied pressure p would reach the collapse pressure. 
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From equations (30), (44) and (47) the expression for equivalent stress is evaluated4:
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q
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q
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q
II
e rr

rr
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4 Corollary: 

Just as in the case of the beam, substituting 0q  in equation (48) leads to the linear elastic solution. 

When 1q , the following equation (48) becomes 

io
q

i
q

o

q
i

q
o

qq

II
e

q rr

p

rr

rr

r

qp

/ln2

3)1(3
limlim

)1(2)1(2

)1(2)1(2

)1(211
 (F.2) 

using L’Hospital’s rule. The above equation corresponds to limit stress distribution because when II
e

reaches the yield value, the applied pressure p would reach the collapse pressure. 
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5.3 Third linear elastic analysis 

The stress-strain relationship for the third linear elastic analysis is given by 

g ill = EH! e ll! 

which can be simplified using equation (30) as 

HI HI 4 /// C 
0 - 6, — =  E 

3 

The elastic modulus E" is determined as follows 

g arb 
I 

EH! = EH 

a  ii 

(49) 

(50) 

(51) 

The second linear elastic analysis stress, cre" , is obtained from equation (48) as 

cr" =  K1 
e 

r
2(1-q) 

(52) 

V-3 
2(1-q) 

p(1— q)ro2(1-q)r2(1-q) H where K1 = , and E is obtained from equation (43), which 
r o ri 

2(1-q) 

makes equation (51) as: 

Em. = K2r2(s-qs+q) 

where K =  garb . 2 

K 
 K1

Equations (43) and (50) when substituted into equation (34) leads to 

d a l" 

dr 

where K 3 = K 2 . 

3 

r  = K3C r
-2(1-s)(1-q)-1 

(53) 

(54) 
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Equation (54) when integrated results in 

—2(1—s)(1—q) 

a rm =K 3 C i + C 2 (55) 
— 2(1— s)(1 — q) 

The boundary conditions provided by equation (37) are invoked for determining the 

arbitrary constant C1: 

2p(1— s)(1 — q) r02(1-s)(1-q)r2(1-s)(1-q)
— (56) 

ro2(1—s)(1—q) r 2(1—s)(1—q) 1 K 3

Equation (56) is substituted into equation (50) and the equivalent stress is obtained from 

equation (30) as: 

•Jp(1— s)(1 — q) o
2(1-s)(1-q) y.2(1-s)(1-q)

Cre 
 ul—

r2(1-s)(1-q) 2(1—s)(1—q) r 2(1—s)(1—q) 
o i 

(57) 

The results obtained from equations (38), (48) and (57) can be summarized as follows: 

ri 2 ro2 

(r e = 2 2 2 r ro

// 
20 —q) 20 —q) -jp(1— q) ro

= 
20—q) 20q) r2(1-q) 

• Jp(1— s)(1— q) ro2(1-s)(1-q)r2(1-s)(1-q) 
Cre 

 ul—

r2(1-s)(1-q) 2(1—s)(1—q) 2(1—s)(1—q) 
o i 

and by induction 

Ar 3p(1 — t)(1 — s)(1 — q) r:2(1-0 ro(1-s)(1-q) 20-0(1—s)(1—q) 

Cie = 
20-0(1—s)(1—q) 20-0(1—s)(1—q) 2(1—t)(1—s)(1—q) ro

and so on. 

(38) 

(48) 

(57) 

(58) 

Whereas in the case of the beam the Poisson's ratio does not have any influence on 

equations (5), (10), (16) and (17), plastic incompressibility (v=0.5) is assumed in deriving 

equations (38), (48), (57) and (58). 
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The results obtained from equations (38), (48) and (57) can be summarized as follows: 

22

22

2

3

io

oiI
e rr

rr

r

p
      (38) 

)1(2)1(2

)1(2)1(2

)1(2

)1(3
q

i
q

o

q
i

q
o

q
II
e rr

rr

r

qp
     (48) 

)1)(1(2)1)(1(2

)1)(1(2)1)(1(2

)1)(1(2

)1)(1(3
qs

i
qs

o

qs
i

qs
o

qs
III
e rr

rr

r

qsp
   (57) 

and by induction 

)1)(1)(1(2)1)(1)(1(2

)1)(1)(1(2)1)(1)(1(2

)1)(1)(1(2

)1)(1)(1(3
qst

i
qst

o

qst
o

qst
i

qst
IV
e rr

rr

r

qstp
 (58) 

and so on. 

Whereas in the case of the beam the Poisson’s ratio does not have any influence on 

equations (5), (10), (16) and (17), plastic incompressibility ( =0.5) is assumed in deriving 

equations (38), (48), (57) and (58). 
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5.4. Relation between moduli modification and power-law creep for the cylinder 

The same argument as in the case of the beam holds good in relating the elastic moduli 

modification index and the power-law creep index. Substituting equation (19) into 

equation (48) leads to: 

= 

p  r 2/nr 2/n 

2/n 2/n n r — r2/n 
o 

(59) 

Equation (59) is the same as the stationary creep stress distributions available in standard 

textbooks (equation 3.2 in page 51 of reference [10]). 

5.5 Shell structures forming multiple plastic hinges before collapse 

Equation (F.2) points to the fact that the second linear elastic analysis produces limit 

distribution for a cylinder for q=1. The pressure components that one would commonly 

come across are usually of thin-shell type and form multiple plastic hinges at collapse. 

Such structures require more than two linear elastic iterations to account for the 

meridional, apart from the through-thickness, stress redistribution. An example of a 

torispherical head subjected to uniform internal pressure is considered. The Young's 

modulus and the yield strength of the material are assumed as 30000 ksi and 30000 psi, 

respectively. The problem is analyzed for two values of Poisson's ratio (v=0.3 and 0.49) 

and three values of elastic moduli modification factors (q=0.25, 0.5 and 1). The lower 

bound limit loads due to elastic iterations and inelastic limit load are shown in Figure 4. 

It can be seen that q=1 causes substantial oscillations in the limit load estimates while 

q=0.25 results in a much smoother limit loads convergence. This can be explained as 

follows. The pressure vessel configuration considered is thin-walled with dominant 

membrane action. The variation of stresses across such a thin section is not considerable. 

The inelastic stress redistribution is predominantly trans-meridional. The second linear 

elastic analysis for q=1 obviously results in a uniform through thinkness stress 

redistribution which is, however, not limit type. The trans-meridional stress redistribution 

requires a number of elastic iterations. However, imposing a q value of unity forces 
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overmodification of elastic moduli value resulting in abnormal displacements in the 

structure. In order to obtain a limit type stress field, the strain fields must also approach 

limit type in accordance with the uniqueness theorem. The basis of moduli modification 

procedure is to progressively change the elastic properties in such a manner that the 

structure by itself decides the stress distribution for which it could maximize the internal 

energy, for a given traction. For thin structures such as torispherical head, a value of q=1 

may be too abrupt to allow the gradual change. 

6. Conclusion 

This paper demonstrates the possibility of one-to-one correspondence between stress 

distributions based on power-law creep and those obtained from repeated elastic 

iterations. The examples of beam under bending and a cylinder subjected to uniform 

internal pressure show that the stress distributions obtained using moduli modification 

procedure are identical to the stationary distributions obtained by using creep power-law. 

Equations (5), (10), (16) and (17) for the beam and equations (38), (48), (57) and (58) for 

the cylinder have interesting implications. A value of EMMF of unity ensures that the 

subsequent elastic analysis would produce a limit distribution, thereby rendering 

additional analyses redundant. Also even an infinite number of elastic analyses for a 

moduli modification index less than unity cannot produce a limit type of stress 

distribution. 

While the assumption of incompressibility necessitates that the Poisson's ratio should 

equal 0.5 for cylinder, it does not have any effect in the case of beam. 

It has also been demonstrated that q=1 can cause difficulty in convergence of lower 

bound limit loads with elastic iterations. However, a smaller value of q, say q=0.25, can 

exhibit smoother convergence. The effect of transverse shear and formation of multiple 

hinges has also been investigated. A value of q between 0.25 and 0.5 is recommended for 

general pressure component design in order to reduce oscillations and ensure smooth 

convergence of lower bound limit loads. 
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Figure 7: Effect of elastic moduli modification index on shear stresses in beam 
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Figure 8: Barrel shaped beam subjected to uniform pressure and stresses across the 
cross-section 
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