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ABSTRACT 

The steady-state nodal diffusion formulation of the non-linear iterative nodal expansion method (NEM) is derived 
independently and is illustrated in detail in this paper. A simple two-dimensional two-group diffusion code with 
the capability of both finite-difference method (FDM) and NEM techniques is also developed. The preliminary 
numerical tests show that the formulation derived in the paper is correct, and the NEM always shows superior 
accuracy over the FDM for a given mesh design, even for CANDU® analysis. The coarse-mesh (about 20-cm 
mesh spacing for a pressurized-water reactor (PWR) and 30-cm mesh spacing for a CANDU reactor) NEM results 
are as accurate as the fine-mesh (about a 1- to 1.5-cm mesh spacing for PWR, and a 5-cm mesh spacing for a 
CANDU reactor) FDM results for both PWR and CANDU analysis. 

1. INTRODUCTION 

The nodal method has been used for light-water reactor (LWR) core-physics and safety analysis for more 
than 20 years. However, because of the large migration area in heavy-water reactor systems, the coarse-
mesh finite-difference method (FDM) has generally been found to be adequate and has been extensively 
used for CANDU analysis in the past three decades. To address the increased accuracy requirements of 
current and future analysis, the nodal method is being investigated as an alternative tool for CANDU 
analysis, especially for transient scenarios when the spatial flux changes rapidISP. 

Among the numerous advanced nodal methods, the nodal expansion method (NEMY1 has been preferred 
because of its rich history of success, adaptability, and popularity. The classical approach to NEM is the 
response-matrix formulation, as adopted in the Siemens PANBOX codd21 and the Westinghouse ANC 
codem. To minimize memory requirements, and especially to facilitate the capability of applying either the 
NEM or the FDM formulation within a single code, an alternative non-linear iterative approach to NEM is 
proposed in this study. This technique was originally developed by Smitf41, successfully implemented in 
the Studsvik Scandpower QPANDAE51 and SIMULATE-3n codes, and subsequently refined and extended 
in the FORMOSA'' and NESTLE[81 codes. 

The basic idea of the non-linear iterative NEM strategy is that, by correcting the FDM diffusion coupling 

a CANDU is a registered trademark of Atomic Energy of Canada Limited (AECL). 
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® CANDU is a registered trademark of Atomic Energy of Canada Limited (AECL). 
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coefficients periodically, it is possible for the FDM to reproduce exactly the same interface net currents as 
those computed by the NEM. Therefore, instead of iteratively solving the complex response-matrix NEM 
formulations, most of the computational effort may be shifted to the less-expensive solution of the FDM 
equations, in which node-average fluxes are the only unknowns. Compared with other nodal methods, the 
advantages of the non-linear iterative NEM strategy are obvious: 

1) The simplicity of the algorithm and the ease of implementation. For a given FDM code such as the 
Reactor Fuelling Simulation Program (RFSPj91, the finite-difference matrix system of equations and 
unknowns is left structurally intact. With a minor correction to the coupling coefficients in the current 
FDM code, the NEM can be implemented directly as an alternative option for the solution of the 
diffusion equation, while sharing the same geometry, cross sections, and iteration procedures as those 
of the FDM. 

2) The reduced number of unknowns (node volume-average fluxes rather than surface-average currents 
are used as the unknowns). 

3) The reduced storage requirements (two-node problem arrays are reusable at each nodal surface). 

Although the non-linear iterative NEM strategy has been successfully used for LWR analysis, the 
documentation available on this technique is scarce because it was originally designed for commercial 
software. In this paper, the steady-state nodal diffusion formulation of the non-linear iterative NEM 
technique is derived independently and is illustrated in detail. A simple two-group diffusion code with the 
capability of both FDM and NEM techniques has been developed. Once it is proven to be an efficient 
method for CANDU analysis, it should be practical to implement this technique in a production code such 
as RFSP in the future. 

2. FDM APPROXIMATION 

By partitioning the Cartesian system into K homogeneous nodes Vk , k=1,2,... ,K, the G-group three-
dimensional (3-D) steady-state neutron-diffusion equation is written in the standard form: 

et 
ji;ukr 1 + T

t : \   vk 
V„/g
Oct.:\ 

Vg kr 
u=x,y,z 

where 
= (x,y,z); u = x,y,z;g =1,...,G; k =1,...,K 

and 
,v k

Q i; ( 17. ) = y(vxf )kg,0;,(0± y, Ikgg'01;( 1;) 
g=1 g'=1 

gig 

By using Fick Law, the u-direction net neutron current can be expressed as: 

k k 
.11; u(10= — Dg . (Pt g (r) 

(la) 

(lb) 

(1c) 

Integrating Equation (1) over spatial node Vk with homogenized properties, and with half-widths ax a yk
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By using Ficks Law, the u-direction net neutron current can be expressed as: 
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Integrating Equation (1) over spatial node Vk with homogenized properties, and with half-widths a;, a!, 
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az , we obtain the well-known nodal balance equation, which we write in terms of the surface-average 

currents J gku(±auk ) as follows: 

k k k k k k k k k 2av 2a,4, [i gu (au )— i gu (—au )+ Xr,g Og— v = 7-1k u k V

a,V,W = x,y,z; u v w; g = 1,...,G; k = 1,...,K 

where the node volume-average flux and source are defined as: 

(2a) 

r  k 

ak(71;k = j a: dx „Y dy (1-)dz (2b) 
g V k -a y -  4k

1 -a
k 

a k

=  d 
k

x f dyf Q k (F)dZ 
V k - a! y - a k g

k G 
=  g DVE )k

A  g' 
g'=1 

g 

and Vk = 2auk 2avk 2a wk represents the volume of node k. 

The surface-average current over the node surface at u = ± a uk , is given by: 

jgu 
k eva i:)=  1  1  f 

. 
a: rat k , k , 

k kj k aW.Igii(±a u
2av 2aw -av - a. 

(2c) 

(2d) 

The solution of Equation (2a) requires additional equations relating the surface-average currents to the 
node volume-average fluxes. It is these additional coupling relationships that characterize the various 
schemes that have been developed for the solution of the neutron-diffusion equation. Certainly, one of the 
simplest means of obtaining these relationships is the well-known mesiDentred FDM approximation as 
adopted in the RFSP code, as explained below. 

First, we consider (for simplicity) a two-dimensional (2-D) view of the nodal model in Figure 1, showing a 
central node labelled "0" and its closest neighbours labelled lz", n = 1 to 6 (with only n = 1 to 4 shown in 

the 2-D view). The surface-average current over the node 0 surface at u = ± au , is expressed as a linear 

combination of the node volume-average fluxes in two adjacent nodes, respectively: 

d02,FDM 
j0,FDM ( +a.) =  

ga 2 ° 2 ° [Wg
_ 

a av, 
d01,FDM 

FDM(—a u ) — 
0 

—
2a° 2a° ci 

[

g 
 _ "11 

gu 

where the FDM diffusion coupling coefficients between node 0 and its neighboursz=1,2 are: 

(3a) 

(3b) 
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The surface-average current over the node surface at u = ± a~ , is given by: 
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The solution of Equation (2a) requires additional equations relating the surface-average currents to the 
node volume-average fluxes. It is these additional coupling relationships that characterize the various 
schemes that have been developed for the solution of the neutron-diffusion equation. Certainly, one of the 
simplest means of obtaining these relationships is the well-known mesmentred FDM approximation as 
adopted in the RFSP code, as explained below. 

First, we consider (for simplicity) a two-dimensional (2-D) view of the nodal model in Figure 1, showing a 
central node labelled "O" and its closest neighbours labelled '>i", n = l to 6 (with only n = l to 4 shown in 

the 2-D view). The surface-average current over the node O surface at u = ± ai, is expressed as a linear 

combination of the node volume-average fluxes in two adjacent nodes, respectively: 

d02,FDM 

JO,FDM (+ao) = _ g [¢2 _ ¢0] 
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gu u 2a O 2a O g g 
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where the FDM diffusion coupling coefficients between node O and its neighbour91=l,2 are: 
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" = 2a°2aw a + n =1 2 g D ° D n 
,

g g 

The generalization to the coefficients dg°'" )m for any of the six interfaces n is evident. Direct substitution 

of Equation (3) into Equation (2) results in the FDM neutron-diffusion equation with node volume-average 
fluxes as the spatial unknowns: 

6 

"g  Smg 
On,FDM (X0 7,n) _,_ v v = 7,10 TT O 

,g g 
n=1 

(4) 

This equation couples any node 0 to its six neighbours n, and through these, to all other nodes. Each term 

" g
On,FDM 

(fig 
 n) represents the group-g leakage out of the node 0 across the surface with its neighbour 

node n. For the system with K homogeneous nodes by G-group approximation, the finite-difference form 
of the neutron-diffusion equation is then a coupled set of K x G linear homogeneous equations of type (4), 
which can be solved effectively. Unfortunately, Equation (3) corresponds to a first-order Taylor expansion 
with a large truncation error in a coarse-mesh application, which may translate into an inaccurate 
characterization of the interface-average currents and, hence, node volume-average flux. 

3. NEM FORMULATION 

The development of interface-current nodal methods such as the NEM is motivated by the need for 
improved accuracy relative to the FDM for a given mesh design. NEM chooses to treat the surface-
average currents in Equation (2a) as additional unknowns, and these surface-average currents can be 
predicted accurately by solving the one-dimensional (1-D) transverse-integrated equations. 

3.1 One-Dimensional Transverse-Integrated Equations 

Integrating Equation (1) over the two directions transverse to each axis, we obtain three 1-D equations for 
the flux and current, one for each direction in Cartesian coordinates, of the following form: 

r

  k (u) ±xrkgoguk k   k t.,\
"du jgu " nguk 4̀1 2avk 2a k l' gwv

u = x,y,z;g =1,...,G; k =1,...,K 

where the transverse-integrated flux and source are defined as: 

gk .(u)  1 k 1 k f -a! dv f -a l: g dWO k (11,V ,141) 
2a v taw 

1 

Q g  (u) = k 1 a!dV f g dWQ k (u, v, w) 
2a, 2a! -a, -at 
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(5a) 

(5b) 
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where the transverse-integrated flux and source are defined as: 
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the average u-directed transverse leakage along v and w, are given by: 

1 faw 
e gv (14) - 

2awk - a! dW (j  gvk avk

_a! dv(Jgwk (u,v,awk )— 
rav 

(a) = 1 k 2av

j gvk ( u,—avk w )) 

the u-direction transverse-integrated current can be expressed as: 

j gvk ( u,v, _ awk )) 

1  fa! ra! k
: u (u) =  dv _ ak dw. bni(u,  v, w)= — Dg  (u) 

2avk tawkJ f
au gu

(5c) 

(5d) 

(5e) 

(50 

Note that, at the node surface u = ± au , the u-direction transverse-integrated current defined in Equation 

(50 is equivalent to the surface-average current defined in Equation (2d). 

3.2 NEM Polynomial Approximation 

The 1-D transverse-integrated nodal flux in Equation (5a) can be solved analytically. This results in the 
famous Analytic Nodal Method111101. However, in the NEM, the 1-D transverse-integrated nodal flux is 
approximated by polynomials of the following form: 

4 
oguk 

(U)=: 

± ck 
Pn 

 (u) 

n=1 

= x,y,z; g =1,...,G; k =1,...,K 

(6a) 

where C guk and Pn (u) are the expansion coefficients and the basis functions, and  is the node volume-

average flux. The accuracy of a nodal method depends on the selection of basis functions and the order N. 
For the quartic NEM, the following fourth-order basis functions are used: 

where 

P 1 ( u ) = 4; 

P 2 (4) = 34 2 —1

(  )(  ). 

P3(u) = 4(4 — 2 4 + 2 ), 

P4 (u) ( 42 21 )( 4 2)(
4+

 2) 

5 

(6b) 

(6c) 

(6d) 

(6e) 
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the average u-directed transverse leakage along v and w, are given by: 

the u-direction transverse-integrated current can be expressed as: 

(5c) 

(5d) 

(5e) 

(5f) 

Note that, at the node surface u =±a;, the u-direction transverse-integrated current defined in Equation 

(5f) is equivalent to the surface-average current defined in Equation (2d). 

3.2 NEM Polynomial Approximation 

The 1-D transverse-integrated nodal flux in Equation (5a) can be solved analytically. This results in the 
famous Analytic Nodal Method11[101 • However, in the NEM, the 1-D transverse-integrated nodal flux is 
approximated by polynomials of the following form: 
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k -k ~ k 

</Jgu (u) = </Jg + .£.JC gun P,. (u) (6a) 
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u = x,y,z;g = 1, ... ,G; k = 1, ... ,K 

where c~n and Pn (u) are the expansion coefficients and the basis functions, andef>: is the node volume

average flux. The accuracy of a nodal method depends on the selection of basis functions and the order N. 
For the quartic NEM, the following fourth-order basis functions are used: 

where 
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u 
g — Za k —au <u<a u (6f) 

u

1 f  +a: 
duP (u)= 0 ,n =1,...,N (6g) 

2a„ 

By By substituting Equation (6) into Equation (5f), expressions for the surface-average currents over the node 

surface at u =± au are obtained as: 

k f 
Dgkk ck 1±3c1c 2+__

1
ck 3+_

1
ck 4 

" gu k—"u 2au g" g" 2 gu 5 g" (7) 

Similarly, upon substitution of Equation (6) into Equation (5c), the transverse-integrated source can be 
approximated by polynomials of the following form: 

4 

Qgu kui 
= 

gun
p n ( u ) 

n=1 

where q guk are the expansion coefficients: 

k G
g 

11 gun —   (VX ) a kun EX k a k

g'=1 
f g' g 

g'=1 
gg' gun 

g' 

3.3 Weighted-Residual Procedure 

(8a) 

(8b) 

Setting u =± a uk in the Equation (6), the two lower-order coefficients of the quartic polynomial for the 

transverse-integrated flux can easily be expressed in terms of the nodal volume-average flux and 
transverse-integrated flux on the surface as: 

C k = (P ( -Fa k ) — (P (—au)  ) gu1 gu u gu u 

Cg u2  O k ( -Fa k ) Ok ( —a k ) — gu u gu u 

To obtain two higher-order coefficients of the quartic polynomial for the transverse-integrated flux, a 
weighted-residual procedure is applied to Equation (5a), and yields the additional moment equations 
needed: 

d k f+1-2C14Wn (U)[ du g" (U) I ircg0;i(u)] = f 2 

cgcon (u)[Q:u(u) — 2 1k (U) — taw 

1 
k L b,„(U)] (9) 

2 

u = x,y,z;g =1,...,G; k =1,...,K 

The nodal balance Equation (2a), recovered using 0)0 (u) =1, is regarded as the zeroth moment equation. 
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3.3 Weighted-Residual Procedure 
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transverse-integrated flux can easily be expressed in terms of the nodal volume-average flux and 
transverse-integrated flux on the surface as: 

c~1 = </J!,(+a;)- </J!,(-a;) 
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To obtain two higher-order coefficients of the quartic polynomial for the transverse-integrated flux, a 
weighted-residual procedure is applied to Equation (5a), and yields the additional moment equations 
needed: 

(9) 

The nodal balance Equation (2a), recovered using m0(u) = 1, is regarded as the zeroth moment equation. 

6 



215tAnnual Conference of the Canadian Nuclear Society 
Toronto, Ontario, Canada /June 11 - 14, 2000 

The first and second moment equations are obtained by weighting with 0)1(u) and 0)2(u) , where these 

functions are specified using either moments weighting: 

col (u) = Pi (u), (02(u) = P2 (u) 

(01(u) = P3 (u), (.02(u), P4 (u) 

Numerical studieel have shown that moments weighting yields superior accuracy, relative to Galerkin 
weighting in NEM approximation. 

or Galerkin weighting: 

3.4 Transverse-Leakage Approximation 

To solve Equation (9), the transverse leakage terms appearing on the right-hand side of the equation must 
be approximated as well. The "flat" approximation and the "quadratic" approximation are the two most-
commonly used approximations. The approximation used in NEM is the "quadratic" transverse leakage 
approximation. For example, the average u-directed transverse leakage along v is given by: 

2 

L kgv (U) = fkgv + /;,,m P n (U) 

n=1 

U = x,y,z; g = 1,...,G; k =1,...,K 

where the nodal surface-average, v-directed, net leakage in node k is expressed as: 

1 

-a: 

at 
g" = tau j ,gv (u) = 8,,,k (+a vk ) — J gvk (—avk ) 

(10a) 

(1 Ob) 

and, the expansion coefficients /fin can be obtained as the following in terms of the nodal surface-average, 

v-directed leakage in three adjacent nodes (i.e. node k-1, k and k+1) so as to preserve the node-average 
leakage in these three nodes: 

where 

l k = L kgvl gv 

h k {
)(Lk — Lk-1)} /k =  (2a:-1+ auk 

)( auk +auk 1)(1 ,1+1+ r ,,,ak+ak+ivak±2ak+, 
ik gv gvi u u u u gv gv gv2 hk 

ik 
(aj2
 f t, auk-1+  auk v Lk+1+  Lk (auk+ auk-oxLku_ 4 -1)1 

`gv3 hk ik gV gV k

hk = ( a k-1+  auk )( auk _Fauk-1)(a k-1+  a k+  a k+1) 

The classical approach to the above-derived NEM formulation is the response-matrix technique, in which 
the surface-average partial currents (incoming and outgoing currents) are used as the unknowns and are 
solved iteratively. This approach has been demonstrated to be quite successful and has been adopted in the 
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The first and second moment equations are obtained by weighting with co1 ( u) and CO2 ( u) , where these 

functions are specified using either moments weighting: 

or Galerkin weighting: 

C01 (u) = ~ (u), CO2 (u) = ~ (u) 

Numerical studies21 have shown that moments weighting yields superior accuracy, relative toGalerkin 
weighting in NEM approximation. 

3.4 Transverse-Leakage Approximation 

To solve Equation (9), the transverse leakage terms appearing on the right-hand side of the equation must 
be approximated as well. The "flat" approximation and the "quadratic" approximation are the two most
commonly used approximations. The approximation used in NEM is the "quadratic" transverse leakage 
approximation. For example, the average u-directed transverse leakage along v is given by: 

2 
k -k "' k Lgv (u) = Lgv + £.)gvnP,. (u) (10a) 

n=l 

u = x,y,z;g = 1, ... ,G; k = 1, ... ,K 

where the nodal surface-average, v-directed, net leakage in node k is expressed as: 

(10b) 

and, the expansion coefficients z;n can be obtained as the following in terms of the nodal surface-average, 

v-directed leakage in three adjacent nodes (j.e. node k-1, k and k+ 1) so as to preserve the node-average 
leakage in these three nodes: 

where 

The classical approach to the above-derived NEM formulation is the response-matrix technique, in which 
the surface-average partial currents (incoming and outgoing currents) are used as the unknowns and are 
solved iteratively. This approach has been demonstrated to be quite successful and has been adopted in the 
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Siemens PANBOX code and Westinghouse ANC code. However, to minimize memory requirements, and 
especially to facilitate the capability of applying the NEM to a current commercial FDM code such as 
RFSP, an alternative non-linear iterative approach to NEM is proposed in this study. This technique was 
originally developed by Smith, successfully implemented in theStudsvik Scandpower QPANDA and 
SIMULATE-3 codes, and subsequently refined and extended in the FORMOSAand NESTLE codes. To 
illustrate this approach, we start from the NEM two-node problem. 

4. NEM TWO-NODE PROBLEM 

Assuming the node volume-average fluxes are known from a previous FDM solution, then, the total 

number of unknown expansion coefficients per node per energy in each direction is 4G gun, n = 1,... ,4, 

g=1,... G, u = x ,y, z), yields 8G unknowns for the following two adjacent nodes. The 8G constraint 
equations required to calculate these unknowns, listed in Table 1, are obtained as follows, 

u-

Zeroth Moment Equation 

Node 
k 

Node 
k+1 

We begin with the substitution of Equation (7) into the nodal balance equation, Equation (2a), for node k, 
we yield the zeroth moment equations: 

1 -k
l '6" 

1 LL Erkg(igk (2ak )2 (11) - 6D kCk - 0.4D kCk = (6 k
g 

Sul 
g gu4 --g 2ak

[
2a k 6-

u= x,y,z• g =1,...,G; k = 1,...,K 

First Moment Equation 

Similarly, substitution of Equations (6), (7), (8), and (10) into the moment Equation (9) using 
col (u) = P1(u) , yields the first moment equations: 

(60D k

g2 -FI rkg

l
k 

1 l gwi j 

10E k C k
rg 

Cguk 3 -10q guk 1 -  q guk 3 - 10 (12a) - 

(2a ) 
t ag
2av

g
2a. 

u,v,w = x,y,z; u v w; g =1,...,G; k =1,...,K 

For two-group approximation, the above equation can be written as: 
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We begin with the substitution of Equation (7) into the nodal balance equation, Equation (2a), for node k, 
we yield the zeroth moment equations: 

(11) 

First Moment Equation 

Similarly, substitution of Equations (6), (7), (8), and (10) into the moment Equation (9) using 
W1 ( u) = Pi ( u) , yields the first moment equations: 

(12a) 

u,v,w=x,y,z; u:;t:v:;t:w;g=l, ,G;k=l, ,K 

For two-group approximation, the above equation can be written as: 
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k 1 
— 10(E 1 — VEk )C k ± 10 

k ,„k 
r A fl lul f2 l'2u1 

60D,k

2 
k

-- VEk )1C krg f 1 1u3 

(12b) 

-F(

(2a uk

k 
a Ek k '1w1) 

A f2 '2u3 
= 14 11'14 + 

2avk Za k

10 12,1ciku1 10Erk v k c ku + 
2C12u1 — '21 1 3 

60Dk 2 v ,k2
1k 

2v1 i k2w1 (12c) / " 
c k _14 

2u3 ••• k 
-La y

••• k 
k2au La w

Second Moment Equation 

Similarly, substitution of Equations (6), (7), (8), and (10) into the moment Equation (9) using 
w2 (u) = P2 (u) , yields the second moment equations: 

t ag   

2 1kgw 2 ) 

l cvk _
(140D

g
k 

+ vk a k 
— 35 gu2 2 rg 4u4 -35 gu2 —  A gu4 2a! 

(13a) 

u,v,w = x,y,z; u v w; 

For the two-group approximation, the above equation can 

1 35(x rk
1 f 

vxk 
1 1u 
)ck 

2 
+ 35 

vxkf22u  
ck 

2 
+ 

1 

g =1,...,G; k =1,...,K 

be written as: 

140D k

k
12

A vxkfl 
ck 

1u4 
+ r 

(2ak 

k k

(13b) 

1 
11v2 11w2 v Ik c k = 

A f2 2u4 
35

2avk Za k

35v k 
"""21'1u2 

35 v k k v k 
"r2 c 2u2 "21'1u4 

180D,k 
6 v k] k 

±"r2 C2,,4 — 35 
1 k2v2 

l k
2w2 (13c) ( k )2 

2,au La„ 2a k

Continuity of the Surface-Average Currents 

Based on the continuity of surface-average current constraints of the two adjacent nodes k and k+1: 

-
gu 
1 . a k • k+1 k +ls 

u — 

we obtain the following equation by using Equation (7): 
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Second Moment Equation 

(12b) 

Similarly, substitution of Equations (6), (7), (8), and (10) into the moment Equation (9) using 
CO2 (u) = Pi (u), yields the second moment equations: 

(13a) 

u,v,w= x,y,z; u-:t-v-:t-w; g= 1, ,G; k = 1, ,K 

For the two-group approximation, the above equation can be written as: 

(13b) 

Continuity of the Surface-Average Currents 

Based on the continuity of surface-average current constraints of the two adjacent nodesk and k+ 1: 

we obtain the following equation by using Equation (7): 
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3 (tau-o1 Dgg +21 
cku2 0.2(2auk+1 )Dgkcguk 4 + 3 (( tau)Dgk-Ficguk + 0.2(2auk )Drcgu1-F4i 

(14) 
2„k+1 Dk + „k+1 Dk 2,„ k Dk+1 k+1 k 1-4+1 k+1 

"u g Cgul — au li g C gu3 = U "u g " u g gu3 

u = x,y,z;g =1,...,G; k =1,...,K 

Discontinuity of the Surface-Average Fluxes 

Finally, the discontinuity of surface-average flux constraints is imposed on the two adjacent nodes as: 

fgku+oguk (+auk )= fguk+1 0 guk+1 (—auk+1) (15) 

The assembly homogenization techniques for LWR analysis can introduce significant error when flux- and 
volume-weighted macroscopic cross sections are used in homogenized nodal reactor models. This error can 
be significant (10% to 15% in assembly powersY1E121 for LWR fuel assemblies that have lumped 

, absorbers, such as control rods or burnable absorbers. The discontinuity factors f igcu+ [11][12] introduced to 

eliminate most of these errors in LWR applications, can be obtained from lattice physics calculations by 
using the following definition: 

,het (±a k )
f k gu u 

gu± (±a k 
gu u ) 

(16) 

where, ogukhet (+auk ) is the surface-average flux obtained from the reference heterogeneous solution, and 

Oguk (±auk ) is the surface-average flux implied by the solution to Equation (1) for nodek. Substituting 

Equation (6) to Equation (15), yields the following equation: 

1 1 1 1 f k ,k f k 1 k+1 f k ,k j_ 44+1 k+1 f 1;k1+1 f  k 
2 J gu2 2.1 gu— 

gut
2.Igu+L gul 2.1 gu— C gul gu— J gu+1"g

u=x,y,z;g=1,...,G; k =1,...,K 

(17) 

It should be mentioned that, although the use of the discontinuity factors is quite common for LWR 
reactors, it is not an important issue for CANDU reactors with the cluster-type fuel lattice design. The 
discontinuity factors, introduced in our nodal formulation for completeness, will be set to 1.0 for our 
CANDU analysis. 

Closed Equation 

Applying Equations (11), (12), (13), (14) and (17) to two adjacent nodes for each energy group, a closed 
8G x 8G system of equations for the solution of the NEM two-node problem is derived in the following 
form, 

Az = B (18) 
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Finally, the discontinuity of surface-average flux constraints is imposed on the two adjacent nodes as: 

(15) 

The assembly homogenization techniques for L WR analysis can introduce significant error when flux- and 
volume-weighted macroscopic cross sections are used in homogenized nodal reactor models. This error can 
be significant (10% to 15% in assembly powers}11J[J2J for LWR fuel assemblies that have lumped 

absorbers, such as control rods or burnable absorbers. The discontinuity factors f ;+ [1IUl2J, introduced to 

eliminate most of these errors in L WR applications, can be obtained from lattice physics calculations by 
using the following definition: 

</J!het (±a!) 

<fJ!(±a!) 
(16) 

where, </J !het (±a; ) is the surface-average flux obtained from the reference heterogeneous solution, and 

<fJ!(±a!) is the surface-average flux implied by the solution to Equation (1) for nodek. Substituting 

Equation (6) to Equation (15), yields the following equation: 

lf k k lf k+l k+I lfk k lf k+I k+I 2 gu+cgu2 -2 gu- cgu2 + 2 gu+cgu1 + 2 gu- cgu1 

u = x,y,z;g = 1, ... ,G; k = 1, ... ,K 

f k+l;;i;°k+I _ fk ;;i;°k 
gu- 'l'g gu+'l'g (17) 

It should be mentioned that, although the use of the discontinuity factors is quite common for L WR 
reactors, it is not an important issue for CANDU reactors with the cluster-type fuel lattice design. The 
discontinuity factors, introduced in our nodal formulation for completeness, will be set to 1.0 for our 
CANDU analysis. 

Closed Equation 

Applying Equations (11), (12), (13), (14) and (17) to two adjacent nodes for each energy group, a closed 
8G x 8G system of equations for the solution of the NEM two-node problem is derived in the following 
form, 

Ax=B (18) 
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where z is the vector of unknown 8G expansion coefficients for two adjacent nodes, and the coefficient 
matrix A and the right-hand-side B are known from the last iteration. 

With the expansion coefficients known after solving this 8G x 8G matrix system, the NEM currents can be 
calculated for each nodal surface. Note that the matrix A is not a diagonal-dominant matrix, and the 
solution of this matrix system has an important effect on the calculation accuracy. Further investigation 
should be made during the practical application of this method to CANDU analysis. 

5. NON-LINEAR ITERATIVE STRATEGY 

5.1 Updating of FDM Coupling Coefficients 

Solutions of Equation (8) of the two-node problems provide NEM-evaluated values of the currents on all 
surfaces. To correct the FDM approximation of the surface-average current, the FDM coupling 
coefficients can be updated by the following approach to force FDM and NEM interface currents to match: 

,FDM ( a U) _  
g 

g dk NEM [A-  1+1 ± A-  11} = k ,NEM k 

gu k1 k 2a,,, g gu+ g g (C1 ugu 

u,v,w = x,y,z; u v w; g =1,...,G; k =1,...,K 

(19) 

where the first term on the right-hand side is the nominal FDM approximation as shown in Equation (3), 
and the second term on the right-hand side represents the non-linear NEM correction applied to the FDM 

approximation. Assuming the NEM-predicted surface-average currents, jgk,NEAt ) are known, the 

coefficients of the NEM correction term, d guk ' NE+ M , can be easily updated. 

Substitution of Equation (19) into the nodal balance equation, Equation (2), results in a new FDM neutron-
diffusion equation: 

~ dgn (Tg 
;i0  0 = y0 

Yrg r,g Svg r r
n=1 

(20) 

Equation (20) is of the same form as Equation (4) except for the NEM-corrected coupling coefficients 

, which are non-linearly updated based on NEM-derived currents. Repeating this non-linear iterative 

procedure several times, the FDM neutron-diffusion equation, Equation (20), will yield the same node-
average flux distribution and fundamental mode eigenvalue as computed by NEM. 

5.2 Iteration Procedures 

The overall iteration strategy of the non-linear iterative NEM strategy discussed here has the following 
complicated nested three-level structure: 

1) coupling coefficient iteration 
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where x is the vector of unknown 8G expansion coefficients for two adjacent nodes, and the coefficient 
matrix A and the right-hand-sideB are known from the last iteration. 

With the expansion coefficients known after solving this 8G x 8G matrix system, the NEM currents can be 
calculated for each nodal surface. Note that the matrix A is not a diagonal-dominant matrix, and the 
solution of this matrix system has an important effect on the calculation accuracy. Further investigation 
should be made during the practical application of this method to CANDU analysis. 

5. NON-LINEAR ITERATIVE STRATEGY 
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Solutions of Equation (8) of the two-node problems provide NEM-evaluated values of the currents on all 
surfaces. To correct the FDM approximation of the surface-average current, the FDM coupling 
coefficients can be updated by the following approach to force FDM and NEM interface currents to match: 

Jk,FDM( k) = _ 1 {ak,FDM[;:i;-k+l _ ;:i;-k]-ak,NEM[;:i;-k+l +;:i;-k]} = Jk,NEM( k) 
gu au 2 k 2 k gu+ 'l'g 'l'g gu+ 'l'g 'l'g gu au 

av aw 
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u, v, w = x,y,z; u -:f- v -:f- w; g = l, ... ,G; k = l, ... ,K 

where the first term on the right-hand side is the nominal FDM approximation as shown in Equation (3), 
and the second term on the right-hand side represents the non-linear NEM correction applied to the FDM 

approximation. Assuming the NEM-predicted surface-average currents, ]!NEM (a;), are known, the 

coefficients of the NEM correction term, d !?M , can be easily updated. 

Substitution of Equation (19) into the nodal balance equation, Equation (2), results in a new FDM neutron
diffusion equation: 

(20) 

Equation (20) is of the same form as Equation (4) except for the NEM-corrected coupling coefficients 

J;n, which are non-linearly updated based on NEM-derived currents. Repeating this non-linear iterative 

procedure several times, the FDM neutron-diffusion equation, Equation (20), will yield the same node
average flux distribution and fundamental mode eigenvalue as computed by NEM. 

5.2 Iteration Procedures 

The overall iteration strategy of the non-linear iterative NEM strategy discussed here has the following 
complicated nested three-level structure: 

1) coupling coefficient iteration 
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2) fission source iteration 
3) nodal flux iteration 

The coupling coefficient iteration arises primarily because of the NEM correction to the FDM 
approximation. Both fission-source and flux iteration are standard iteration procedures used in the FDM. 
The basic procedure for this non-linear iterative approach is as follows: 

1) Compute initial FDM coupling coefficients d:n'FDAI based upon the FDM approximation 

(Equation (3)). 

2) Set NEM-corrected coupling coefficients if:" in Equation (20) equal to the initial FDM coupling 

coefficients calculated in step 1. 
3) Solve the coarse-mesh FDM neutron-diffusion Equation (20) to get nodal volume-average flux 

distributions. Check for convergence of both fission source and nodal flux. 
4) Update the coefficient matrix A and the right-hand-side B in Equation (18), and then solve NEM 

two-node problems to provide the NEM-evaluated surface-average current for each nodal surface. 

5) Update NEM-corrected coupling coefficients dg" in Equation (20) to force the FDM- and NEM-

derived surface-average currents to agree. 
6) Return to step 3 with the updated coupling coefficients until convergence is reached. 

Numerically, the NEM currents and coupling-coefficients corrections are non-linearly updated in an outer-
nested iterative fashion. For the LWR application, the process has proven to be a convergent technique 
that forces the FDM equations to yield nearly the same node-average flux distribution and fundamental-
mode eigenvalue as computed by NEM. 

6. PRELIMINARY NUMERICAL TESTS 

To verify the formulation and iteration strategy described in this paper, a two-group two-dimensional 
steady-state non-linear iterative NEM formulation was programmed and implemented into a simple FDM 
code. The new code named NINEM has the capability of using either NEM or the FDM formulation. A 
series of 2-D benchmark problems have been tested. The coarse-mesh NEM results were comparable to 
both coarse-mesh and fine-mesh FDM calculations using one code (NINEM) on the same UNIX 
workstation. 

Two-Dimensional BIBLIS PWR ProblenF1131 

This is a realistic commercial operating PWR problem and the base mesh spacing is 23.1226 cm per 
assembly. The large assembly size and the checkerboard fuel-assembly loading pattern make the problem 
hard to solve accurately. Figure 2 compares the normalized assembly-average power densities from the 
coarse-mesh (1 x 1 and 2 x 2 per assembly) NEM calculation, the coarse mesh (2 x 2 per assembly) and 
the fine-mesh (15 x 15 per assembly) FDM calculations. Compared with the fine-mesh (15 x 15 per 
assembly) FDM results, the coarse-mesh (2 x 2 per assembly) FDM yields a maximum error in the 
assembly-average power densities of about 23% at the core periphery region, and is not considered reliable 
for PWR analysis. However, the coarse-mesh NEM results are in very good agreement with the fine-mesh 
(15 x 15 per assembly) FDM results, with maximum errors in the assembly-average power densities of 
about 1.4% and 0.2% for NEM (1 x 1) and NEM (2 x 2), respectively. 
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This is a realistic commercial operating PWR problem and the base mesh spacing is 23.1226 cm per 
assembly. The large assembly size and the checkerboard fuel-assembly loading pattern make the problem 
hard to solve accurately. Figure 2 compares the normalized assembly-average power densities from the 
coarse-mesh (1 x 1 and 2 x 2 per assembly) NEM calculation, the coarse mesh (2 x 2 per assembly) and 
the fine-mesh (15 x 15 per assembly) FDM calculations. Compared with the fine-mesh (15 x 15 per 
assembly) FDM results, the coarse-mesh (2 x 2 per assembly) FDM yields a maximum error in the 
assembly-average power densities of about 23% at the core periphery region, and is not considered reliable 
for PWR analysis. However, the coarse-mesh NEM results are in very good agreement with the fine-mesh 
(15 x 15 per assembly) FDM results, with maximum errors in the assembly-average power densities of 
about 1.4% and 0.2% forNEM (1 x 1) and NEM (2 x 2), respectively. 

12 



21stAnnual Conference of the Canadian Nuclear Society 
Toronto, Ontario, Canada /June 11 - 14, 2000 

Two-Dimensional EPRI-9 Benchmark Probleni141

This is a simplified 2-D 2-group benchmark problem used to validate the capability of applying the 
discontinuity factors in our nodal code. The base mesh spacing is 20 cm per assembly. Figure 3 compares 
the normalized assembly-average power densities from the coarse-mesh (1 x 1 per assembly) NEM 
calculation, the coarse-mesh (1 x 1 per assembly) and the fine-mesh (20 x 20 per assembly) FDM 
calculations, in which discontinuity factors were not considered. Compared with the fine-mesh (20 x 20 
per assembly) FDM results, the coarse-mesh (1 x 1 per assembly) FDM yields a maximum error in the 
assembly-average power densities of about 15%. However, the coarse-mesh (1 x 1 per assembly) NEM 
results show very good agreement with the fine-mesh (20 x 20 per assembly) FDM results, the maximum 
error in the assembly-average power densities is only 0.9%. 

Figure 4 shows the normalized assembly-average power densities of the coarse mesh (1 x 1 and 2 x 2 per 
assembly) NEM and reference solutior1141, in which discontinuity factors were considered. Once again, we 
note that the coarse-mesh NEM results show very good agreement with the reference solution. 

Two-Dimensional CANDU Benchmark Problenli151

This is a simplified 2-D CANDU core with only two fuel regions (inner and outer fuel regions) in the core, 
surrounded by a heavy-water reflector, as shown in the Figure 5. A non-uniform 32 x 32 mesh consisting 
of mesh spacings of 15 cm and 30 cm was used as the base mesh. Figure 6 compares the normalized 
assembly-average power densities from the coarse-mesh (1 x 1 sub-mesh) NEM calculation, the coarse-
mesh (1 x 1 and 2 x 2 sub-mesh) and the fine-mesh (8 x 8 sub-mesh) FDM calculations. 

The coarse-mesh (1 x 1 sub-mesh) FDM-derived eigenvalues agree well (0.981183 vs. 0.981184) between 
our NINEM calculation and the reference CERKIN calculation provided in Reference 15. To compare the 
accuracy of coarse-mesh FDM and NEM results, a fine-mesh (8 x 8 sub-mesh) FDM calculation was 
performed with our NINEM code and used as the new `reference" shown in the first row in each box of 
Figure 6. 

Compared with the reference fine-mesh (8 x 8 sub-mesh) FDM results, the coarse-mesh FDM calculations 
show good agreement in the assembly-average power densities for the core interior region, with maximum 
errors in the assembly-average power densities of about 1.4% and 0.4% (located near the boundary of the 
inner and outer regions) for FDM (1 x 1) and FDM (2 x 2) respectively. However, for the core periphery 
region (the region close to the reflector), the maximum errors in the assembly-average power densities 
reach about 5.9% and 2.4% for FDM (1 x 1) and FDM (2 x 2), respectively. Such errors can be avoided 
by using the nodal method. As shown in Figure 6, the coarse-mesh (1 x 1 per assembly) NEM results show 
very good agreement with the fine-mesh (8 x 8 sub-mesh) FDM results, with a maximum error in the 
assembly-average power densities, located in the core periphery region as well, of about 0.8%. 

The last row in each box of Figure 6 shows the NEM (1 x 1) results with the "flat" transverse leakage 
approximation. Clearly the NEM (1 x 1) results with the "flat" transverse leakage approximation are as 
accurate as the NEM (1 x 1) results with the "quadratic" transverse leakage approximation. This implies 
that the "flat" transverse leakage approximation, as used in Reference 1 for 3-D CANDU transient 
scenario, would be an adequate approximation for CANDU analysis. 
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Figure 4 shows the normalized assembly-average power densities of the coarse mesh (1 x 1 and 2 x 2 per 
assembly) NEM and reference solutio:rl:141 , in which discontinuity factors were considered. Once again, we 
note that the coarse-mesh NEM results show very good agreement with the reference solution. 

Two-Dimensional CANDU Benchmark Probleai.151 

This is a simplified 2-D CANDU core with only two fuel regions (inner and outer fuel regions) in the core, 
surrounded by a heavy-water reflector, as shown in the Figure 5. A non-uniform 32 x 32 mesh consisting 
of mesh spacings of 15 cm and 30 cm was used as the base mesh. Figure 6 compares the normalized 
assembly-average power densities from the coarse-mesh (1 x 1 sub-mesh) NEM calculation, the coarse
mesh (1 x 1 and 2 x 2 sub-mesh) and the fine-mesh (8 x 8 sub-mesh) FDM calculations. 

The coarse-mesh (1 x 1 sub-mesh) FDM-derived eigenvalues agree well (0.981183 vs. 0.981184) between 
our NINEM calculation and the reference CERKIN calculation provided in Reference 15. To compare the 
accuracy of coarse-mesh FDM and NEM results, a fine-mesh (8 x 8 sub-mesh) FDM calculation was 
performed with our NINEM code and used as the new "reference" shown in the first row in each box of 
Figure 6. 

Compared with the reference fine-mesh (8 x 8 sub-mesh) FDM results, the coarse-mesh FDM calculations 
show good agreement in the assembly-average power densities for the core interior regiog, with maximum 
errors in the assembly-average power densities of about 1.4% and 0.4% (located near the boundary of the 
inner and outer regions) for FDM (1 x 1) and FDM (2 x 2) respectively. However, for the core periphery 
region (the region close to the reflector), the maximum errors in the assembly-average power densities 
reach about 5.9% and 2.4% for FDM (1 x 1) and FDM (2 x 2), respectively. Such errors can be avoided 
by using the nodal method. As shown in Figure 6, the coarse-mesh (1 x 1 per assembly) NEM results show 
very good agreement with the fine-mesh (8 x 8 sub-mesh) FDM results, with a maximum error in the 
assembly-average power densities, located in the core periphery region as well, of about 0.8%. 

The last row in each box of Figure 6 shows the NEM (1 x 1) results with the "flat" transverse leakage 
approximation. Clearly the NEM (1 x 1) results with the "flat" transverse leakage approximation are as 
accurate as the NEM (1 x 1) results with the "quadratic" transverse leakage approximation. This implies 
that the "flat" transverse leakage approximation, as used in Reference 1 for 3-D CANDU transient 
scenario, would be an adequate approximation for CANDU analysis. 
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The CANDU benchmark problem shown here is quite simple; it is anticipated that the higher accuracy of 
the nodal method compared to FDM method would be obtained for a realistic CANDU problem having a 
more complex flux shape. 

7. CONCLUSIONS 

In this paper, the steady-state nodal diffusion formulation of the non-linear iterative nodal expansion 
method (NEM) was derived independently and illustrated in detail. A simple 2-D two-group diffusion code 
with the capability of both finite-difference method (FDM) and NEM techniques has also been developed. 
Preliminary numerical tests show that the formulation derived in the paper is correct, and the NEM always 
shows superior accuracy over the FDM for a given mesh design, even for CANDU analysis. The coarse-
mesh (about a 20-cm mesh spacing for PWRs and a 30-cm mesh spacing for CANDU reactors) NEM 
results are as accurate as the fine-mesh (about a 1- to 1.5-cm mesh spacing for PWRs, and a 5-cm mesh 
spacing for CANDU reactors) FDM results for both PWR and CANDU analysis. 

It should be noted that, even though the nodal formulation we derived in this paper is for the solution of the 
3-D multi-group steady-state diffusion equation, the code we developed is very preliminary and is suited for 
formulation-testing purposes only. The FDM code we selected is a simple independent academic one 
without acceleration technique, and was limited to 2-D geometry with the constrained boundary conditions. 
Also the 8G x 8G matrix solver and the non-linear iteration procedure need to be refined and widely 
verified. Possible idea for further investigation are extension of the code to 3-D geometry and application 
of the nodal method to a 3-D CANDU benchmark problem. If this method is proven to be efficient for 
CANDU analysis, it should be practical to implement it in RFSP in the future. 
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Figure 1: Schematic 2-D View of Typical Node Showing Nodes to which It Is Coupled 
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Figure 2: Normalized Assembly-Average Power Densities for 2-D BIBLIS PWR Problem 
(one eighth Symmetric Core Configuration) 
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Figure 3: Normalized Assembly-Average Power Densities for the EPRI-9 Benchmark Problem 
(No Discontinuity Factors) 
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1. Zero flux boundary conditions on external surfaces 
2. A non-uniform 32 x 32 meshe consisting of mesh spacings of 15 cm and 30 cm was used 

as the base meshes. 
3. There are two fuel regions (regions 1 and 2) in the core, surrounded by a heavy-water 

reflector (region 3) 

Figure 5: Geometry Description of 2-D CANDU Benchmark Problem 
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1.181 1.168 1.154 1.143 1.155 1.068 0.950 0.859 0.761 0.685 
1.180 1.167 1.154 1.144 1.145 1.060 0.950 0.860 0.765 0.702 
1.175 1.163 1.151 1.142 1.140 1.057 0.951 0.861 0.767 0.710 
1.175 1.163 1.151 1.142 1.141 1.059 0.952 0.862 0.769 0.711 

1.146 1.124 1.104 1.090 0.999 0.891 0.803 0.712 0.656 
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1.148 1.126 1.104 1.093 1.001 0.890 0.801 0.710 0.648 
1.145 1.123 1.103 1.090 1.000 0.892 0.803 0.713 0.657 
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1.091 1.053 1.023 0.920 0.807 0.720 0.632 0.572 
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0.993 0.935 0.819 0.718 0.635 0.547 0.482 
0.995 0.936 0.824 0.732 0.651 0.563 0.498 
0.994 0.936 0.824 0.729 0.648 0.561 0.497 
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0.591 - FDM (8 x 8) K = 0.981368 
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0.579 - FDM (2 x 2) K = 0.981281 
0.596 - NEM (1 x 1) K = 0.981415 
0.593 - NEM (1 x 1) K = 0.981416 (Flat Leakage) 

*Note: The assembly-average power densities with the maximum calculation errors in the core interior and 

periphery regions are shown in bold characters. 

Figure 6: Normalized Assembly-Average Power Densities for 2-D CANDU Benchmark Problem 

(one eighth Symmetric Core Configuration) 
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1.181 1.168 1.154 1.143 1.155 
1.180 1.167 1.154 1.144 1.145 
1.175 1.163 1.151 1.142 1.140 
1.175 1.163 1.151 1.142 1.141 

1.146 1.124 1.104 1.090 
1.148 1.125 1.103 1.101 
1.148 1.126 1.104 1.093 
1.145 1.123 1.103 1.090 
1.144 1.123 1.103 1.090 

1.090 1.053 1.021 
1.089 1.051 1.030 
1.091 1.053 1.023 
1.090 1.053 1.022 
1.089 1.053 1.022 

0.994 0.935 
0.990 0.940 
0.993 0.935 
0.995 0.936 
0.994 0.936 

0.827 
0.830 
0.827 
0.830 
0.826 

1.114 1.007 0.915 0.819 0.760 
1.127 1.008 0.914 0.813 0.734 
1.118 1.008 0.915 0.817 0.752 
1.113 1.007 0.915 0.819 0.760 
1.115 1.008 0.917 0.820 0.762 
1.095 0.989 0.897 0.802 0.743 
1.108 0.989 0.896 0.796 0.718 
1.099 0.989 0.897 0.800 0.736 
1.095 0.988 0.897 0.802 0.744 
1.096 0.990 0.899 0.803 0.745 
1.058 0.950 0.860 0.767 0.709 
1.068 0.950 0.859 0.761 0.685 
1.060 0.950 0.860 0.765 0.702 
1.057 0.951 0.861 0.767 0.710 
1.059 0.952 0.862 0.769 0.711 
0.999 0.891 0.803 0.712 0.656 
1.008 0.890 0.800 0.706 0.633 
1.001 0.890 0.801 0.710 0.648 
1.000 0.892 0.803 0.713 0.657 
1.001 0.893 0.804 0.714 0.658 
0.919 0.809 0.722 0.635 0.579 
0.925 0.806 0.718 0.628 0.558 
0.920 0.807 0.720 0.632 0.572 
0.920 0.810 0.723 0.636 0.581 
0.921 0.810 0.723 0.636 0.581 
0.822 0.728 0.647 0.558 0.494 
0.818 0.708 0.622 0.534 0.465* 
0.819 0.718 0.635 0.547 0.482 
0.824 0.732 0.651 0.563 0.498 
0.824 0.729 0.648 0.561 0.497 
0.720 
0.704 
0.713 
0.723 
0.719 
0.591 - FDM (8 x 8) K = 0.981368 
0.561 - FDM (1 x 1) K = 0.981193 
0.579 - FDM (2 x 2) K = 0.981281 
0.596 - NEM (1 x 1) K = 0.981415 
0.593 - NEM (1 x 1) K = 0.981416 (Flat Le akage) 

*Note: The assembly-average power densities with the maximum calculation errors in the core interior and 
periphery regions are shown in bold characters. 

Figure 6: Normalized Assembly-Average Power Densities for 2-D CANDU Benchmark Problem 
(one eighth Symmetric Core Configuration) 
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