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1.0 INTRODUCTION 

When a CANDU® * reactor is tripped or shutdown, there is residual thermal energy due to the 
natural decay of radioisotopes contained in the fuel. This phenomenon, called decay power, is of 
significant interest when planning maintenance projects during outages. The DCYPWR 
computer code predicts the decay power from CANDU® fuel after shutdown, for cooling periods 
from one second to 31 years. 

DCYPWR code development began in 1986, and it has been used at PLGS since then as a best-
estimate tool to calculate decay power for various applications. The current state of the 
DCYPWR code is the subject of this paper. 

2.0 CODE DESCRIPTION 

Decay power calculations in the DCYPWR code are based on two methodologies: 

• The American National Standards Institute / American Nuclear Society standard on decay 
heat power, ANSI/ANS-5.1-1994 [11, and 

• An AECL study of channel decay power [2,31. This method applies a curve based on a safety 
analysis of the highest value of channel decay power in the core at various times following 
shutdown. 

2.1 ANSI/ANS-5.1-1994 Standard Ell

The ANSI/ANS-5.1-1994 standard accounts for decay heat in reactors with 235U as the initial 
major fissile material and 238U as the fertile material. The contributions to decay power of the 

39,-. fissile components 235U, 
238U,

 2 ru and 241Pu are treated explicitly. Methods to account for the 
effect of neutron capture by fission products (using a function G(t)) and to account for the 
contribution of the heavy elements 239U and 239Np are also used. 

* CANDU® and CANFLEX® are registered trademark of Atomic Energy of Canada Limited (AECL). 

- 1 -  - 1 - 
 

The DCYPWR Code: Fuel Decay Power Calculations 
for CANDU® Fuel and Reactor Cores

by 
 

D.F. Basque1, J.A. Walsworth1, R.A. Prime1, R.W. Sancton2 and E.G. Young2 
 

1 Brunswick Nuclear Inc., 142 Brunswick Street, Fredericton, NB, E3B 1G6 
2 Point Lepreau Generating Station, P.O. Box 600, Lepreau, NB, E5J 2S6 

 
1.0 INTRODUCTION 
 
When a CANDU® * reactor is tripped or shutdown, there is residual thermal energy due to the 
natural decay of radioisotopes contained in the fuel.  This phenomenon, called decay power, is of 
significant interest when planning maintenance projects during outages.  The DCYPWR 
computer code predicts the decay power from CANDU® fuel after shutdown, for cooling periods 
from one second to 31 years.   
 
DCYPWR code development began in 1986, and it has been used at PLGS since then as a best-
estimate tool to calculate decay power for various applications.  The current state of the 
DCYPWR code is the subject of this paper. 

2.0 CODE DESCRIPTION 

Decay power calculations in the DCYPWR code are based on two methodologies:  

The American National Standards Institute / American Nuclear Society standard on decay 
heat power, ANSI/ANS-5.1-1994 [1], and  

 
An AECL study of channel decay power [2,3].  This method applies a curve based on a safety 
analysis of the highest value of channel decay power in the core at various times following 
shutdown. 

 
2.1 ANSI/ANS-5.1-1994 Standard [1]  
 
The ANSI/ANS-5.1-1994 standard accounts for decay heat in reactors with 235U as the initial 
major fissile material and 238U as the fertile material.  The contributions to decay power of the 
fissile components 235U, 238U, 239Pu and 241Pu are treated explicitly.  Methods to account for the 
effect of neutron capture by fission products (using a function G(t)) and to account for the 
contribution of the heavy elements 239U and 239Np are also used. 
                                                           
* CANDU® and CANFLEX® are registered trademark of Atomic Energy of Canada Limited (AECL). 
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The overall equation for computing decay power according to the ANS-5.1 standard is: 

where: 

Pa (t) = [G(t) X Pf (t) P max  X H.E.P  (01X PSD t
(1) 

Pd(t) is the fractional decay power at future time, t 
G(t) accounts for neutron capture in fission products (see above) 
Pf(t) is the sum of the fissile decay power fractions 
P. is the maximum power experienced during operation, as a fraction of full 

power 
PH.E.(t) is the sum of the heavy element decay power fractions 
PSD is the steady state power at the time of reactor shutdown or trip 

The function used to represent the effect of neutron capture in fission products, G(t), supports 
cooling times up to 1010 seconds. Below 104 seconds, equation 2 was used to determine the 
values of G(t): 

where: 

G(t) =1.0 + (3.24x10-6 +5.23 x10-1°Or 4v (2) 
{Equation 11 of Reference [1]} 

t is the future time of interest, in seconds 
T is the pre-trip operating time, seconds 
yr is the fissions per initial fissile atom, dimensionless (assumed = 1.0) 

From 104 seconds and up, the values of Gmax(t) from Table 13 of the standard were used. These 
functions are depicted in Figure 1. 

2.2 The AECL-5704 Curve [2'31

AECL-5704 [21 is a safety analysis study to determine the highest value of channel decay power 
in the core at various times following shutdown. The resulting curve of channel decay power 
versus time was extended to include cooling periods from 105 to 108 seconds [31. A comparison 
of the extended AECL-5704 curve to that programmed in the DCYPWR code demonstrates very 
good agreement (correlation coefficient r = 0.9999). Refer to Figure 2. 

2.3 Features of the DCYPWR Code 

• Ease of Use — With a small number of straightforward input and output files, the DCYPWR 
code is more convenient to use than most industry standard codes (which require extensive 
user training). 

The DCYPWR code substitutes actual power, in kW, for the terms P1(t) and P  in the above equation, resulting in 
an absolute value for decay power, Pd(t) in kW. 
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code is more convenient to use than most industry standard codes (which require extensive 
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 The DCYPWR code substitutes actual power, in kW, for the terms Pf(t) and Pmax in the above equation, resulting in 

an absolute value for decay power, Pd(t) in kW. 
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• Modelling of Detailed Power Manoeuvres — The DCYPWR code can model not only 
multiple pre-trip power manoeuvres, but also multiple post-trip power manoeuvres. This 
feature supports operations such as Shutdown System (SDS) Trip-and-Recovery manoeuvres. 

• Individual Bundle Analysis — Treatment of up to 12 CANDU® fuel bundles on an individual 
basis. 

• Full Core Analysis — Two options are available, providing decay powers for various cooling 
times for each channel, axial zone pairs, the whole core, as well as identifying the hottest 
bundle and the hottest channel for each cooling time of interest. 

• Typical Fuel Distribution — Modelling of an eight-bundle fuelling shift strategy permits 
the calculation of full core decay power for a typical core with a typical distribution of 
fuel, i.e. bundle-specific values for average bundle power, exit burnup and fuel type are 
obtained from the last Reactor Fuelling Simulation Program (RFSP) run prior to 
shutdown. A sample facemap appears in Figure 3. 

• Full Core Verification Option — Full core decay power calculations involve tens of 
thousands of calculations. Verification of these calculations by hand is clearly 
impractical. This option was added in compliance with the Canadian Standards 
Association standard on quality assurance for nuclear analysis codes [4]. An option was 
added that can compute the decay power for a core with a uniform distribution of fuel, i.e. 
all bundles in the core having the same average bundle power during irradiation and the 
same exit burnup at the time of shutdown. 

3.0 APPLICATIONS 

3.1 Decay Power in a Single Bundle 

The decay power for a given bundle can be computed at several times of interest following a 
shutdown. This feature supports spent fuel shipments by determining when a bundle is safe for 
off-site transport, which is described in a reactor physics departmental procedure [5]. 
Applications include shipment of CANFLEX® fuel following the demonstration irradiation at 
Point Lepreau Generation Station (PLGS), to Chalk River Laboratories for post irradiation 
examination [6]. 

This application requires bulk power operating history and bundle-specific burnup, power and 
fuel-type data just prior to reactor shutdown. These are input in a problem description file, and 
the user proceeds directly to the Bundle Calculation Menu to calculate the absolute decay power 
for one or more specific bundles (in kW). 
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3.2 Axial Profile of Decay Power in a Channel 

The axial profile of decay power across a channel (all bundles) can be computed for future times 
of interest after shutdown. Applications of this feature include the support of outage 
maintenance activities, such as SLAR (Spring Location and Relocation) and pressure tube 
diametral creep measurements, by helping to identify the earliest time after shutdown when the 
Primary Heat Transport System may be opened for maintenance. Refer to Figure 4 for a sample. 

This application is described in a reactor physics departmental procedure M. Required inputs 
include bulk power operating history (via a problem description input file) and bundle-specific 
burnup, power and fuel-type data for the full core just prior to reactor shutdown. Following a full 
core decay calculation, the user can pass data to the Bundle Calculation Menu to calculate the 
absolute decay power for the 12 bundles in any channel (in kW). 

3.3 Decay Power in the Full Core 

The total decay power in the reactor core can be computed at several future times following a 
shutdown. This feature identifies the shutdown decay heat load over time, so that system 
engineers can ensure adequate cooling of the reactor. This application is described in a reactor 
physics departmental procedure [8]

• Full Core Calculation Option, 8-Bundle Shift Fuelling Strategy — This option requires bulk 
power operating history and bundle-specific burnup, power and fuel-type data just prior to 
reactor shutdown. The DCYPWR code simulates an on-line "8-bundle shift" fuelling 
strategy. As a result, a different bundle power history is possible for each bundle. This leads 
to different values of absolute decay power for each bundle (in kW). The full core decay 
power is the summation of the bundle decay powers. See Figure 3. 

4.0 VERIFICATION 

The DCYPWR Version 3.5 source code was verified and results were compared to both the 
ANS-5.1 and the AECL-5704 methodologies. 

4.1 ANS-5.1-1994 Methodology 

The DCYPWR code Version 3.5 uses the methodology and algorithms presented in the ANS-5.1-
1994 standard. Where possible, CANDUe-specific data are used to customize the decay power 
calculations [9]. The bases for the individual terms in Equation (1) are given in Table 1. 
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Table 1— Bases for Individual Terms in Equation (1) 

Term
G(t) 
Pf(t) 
P max 

PH.E.(0 
PSD 

Description
neutron capture in fission products 

fissile decay power fractions 

max. power experienced during operation 

heavy element decay power fractions 

steady state power at shutdown or trip 

Algorithm
ANS-5.1-1994 

ANS-5.1-1994 

ANS-5.1-1994 

Data 
ANS-5.1-1994 

POWDERPUFS-V [9] 

plant data 

POWDERPUFS-V [9] 

plant data 

To compare DCYPWR with the ANS-5.1 methodology, the reactor operating history given in 
Appendix B of the ANS-5.1-1994 standard was used (see Table 2). The total assumed operating 
time was (3*300+2*60) days, or 8.8128*107 seconds. These examples assumed 1.0 fission per 
initial fissile atom, as does the DCYPWR code. In the code, the energy released per fission has 
been assumed to range between 199.74 and 205.30 MeV/fission, depending on burnup. The 
example in Appendix B assumed a value of 200 MeV/fission (not a significant difference). 

Table 2 — Sample Power History 

As presented in ANS-5.1-1994, Appendix B, Example 1 [1] 

235U

239
Pu 

238U

241Pu 

Fractional 
Power 

0.80 

0.13 

0.06 

0.01 

0.60 

0.29 

0.07 

0.04 

0.40 

0.42 

0.08 

0.10 

300d 60d 300d 60d 300d Time -,

Values from the DCYPWR code were compared to the results in Appendix B of the ANS-5.1-
1994 standard by calculating the relative error, or percent difference. A positive value for 
relative error indicates that the DCYPWR value was lower than the value from the ANS-5.1 
standard. The individual options compared were: 

• Single ANS Calculation Option — This option provides the intermediate values for the decay 
power calculation, allowing the user to verify the code by hand calculation. For this option, 
each step in the operating history in Table 2 was modelled separately, and then the decay 
power curves were added together. Referring to Figure 5, the overall decay power fractions 
from the DCYPWR code are in very good agreement with the sample problems. The relative 
error is less than 1%, except in two instances, which are explained as follows: 
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• The deviation at 104 seconds occurs at the transition from applying the G(t) equation to 
applying the conservative upperbound Gmax(t). The DCYPWR code applies the 
conservative upperbound Gmax(t) for t 104 seconds, whereas the examples in the 
standard only apply Gmax(t) for t >104 seconds. This application was not clearly defined 
in the standard, hence this slight overestimate of decay power by the DCYPWR code. 

• The examples in Appendix B of the standard do not report any decay power contributions 
from the heavy elements for t 107 seconds. The DCYPWR code does calculate and 
apply values in this range, resulting in a slight overprediction by the DCYPWR code. 

• Single Bundle Calculation Option versus Hand Calculation — A single bundle, irradiated for 
205 days with an average bundle power of 536.2 kW, and cooled for 256 days yielded a 
decay power of 113 W using the "single bundle calculation option" (this scenario was not 
taken from the Appendix B of the standard). The hand calculation for the same bundle (using 
intermediate values from the "single ANS calculation option" described above) yielded a 
decay power of 110 W. The relative error is -2.7%, as seen in Figure 5. 

• Full Core Calculation Option, RFSP Data, 8-Bundle Shift Fuelling Strategy — The results 
depicted in Figure 6 show very good agreement up to 105 seconds (within 10%). Beyond 
these cooling times, the DCYPWR results are increasingly lower than the ANS-5.1 
examples . This effect is most likely the difference between modelling natural uranium fuel 
in the CANDU® system compared to enriched-uranium fuel in a light water system. This 
indicates that decay power in natural uranium may dissipate faster than enriched uranium 
fuel. 

• Single Bundle Calculation Option, RFSP Data, 8-Bundle Shift Fuelling Strategy — To 
confirm the trend seen in the "full core option" above, two bundles were selected with the 
following characteristics: (a) a bundle of average burnup and low power, hence long dwell 
time; and (b) a bundle of low burnup and high power, hence short dwell time. In Figure 6, 
the results show the same general trend as the full core analysis. However, the magnitude of 
the relative errors is strongly dependant on the history of the specific bundle, demonstrating 
the complexity of modelling a CANDU® reactor core. If this single bundle analysis were 
extended to all 4560 bundles in the core, the relative error curve for the full core analysis 
would clearly represent the average of the 4560 single bundle curves. This would also serve 
as an overall uncertainty analysis. 

* Recall that decay powers at cooling times of 109 seconds are in the order of 5 kW for the whole core! 
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4.2 Verification of AECL-5704 Methodology 

As indicated in Section 2.2, the results from the equation in the DCYPWR code are in very good 
agreement with the extended AECL-5704 curve (correlation coefficient r = 0.9999). 

4.3 Uncertainties 

The uncertainties in the ANSI/ANS-5.1-1994 standard, dependent on cooling time, are stated as 
follows: 

Cooling Time 

tcooling < 103 seconds 
103 seconds < tcooling < 107 seconds 
tcooling > 107 seconds 

Uncertainty 

+ 20%, - 40% 
+ 10%, - 20% 
+ 25%, - 50% 

Historically, DCYPWR code results have been reported with these uncertainties. The 
comparison exercises have shown that at longer cooling times the DCYPWR code 
underestimates the examples in the ANS-5.1-1994 standard by an even greater margin. This 
effect is most likely the difference between modelling natural uranium fuel in the CANDU®
system compared to enriched-uranium fuel in a light water system. The overall uncertainty in 
applying the ANS-5.1-1994 standard to the CANDU® system has not yet been evaluated. 

5.0 FUTURE DEVELOPMENT 

The following are activities that have been identified for future DCYPWR code development: 

• Addition of an option to estimate pin (fuel element) decay power 
• Apply or develop further CANDU® specific factors for use with the ANS-5.1 standard 
• Use recent isotopic data specific to CANDU® fuel to obtain more accurate power fractions 
• Apply the appropriate decay power-to-fission power ratio for decay power calculations 
• Identify and apply possible CANFLEX® specific factors for decay power calculations 
• Evaluate the overall uncertainty in applying the ANS-5.1 standard to the CANDU® system 

6.0 CONCLUSIONS 

• The DCPWR code is an easy tool to use that supports spent fuel shipments, reactor shutdown 
and outage maintenance activities. 

• The ANS-5.1-1994 standard is being properly applied by the DCYPWR code, as 
demonstrated by the close agreement between the hand calculations (using data from the 
Single ANS Calculation option) and the examples in Appendix B (Figure 5). 

• Decay power calculations for a single bundle were confirmed by hand calculation (Figure 5). 
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• When the whole core is considered, a trend of increasing percent difference with increasing 
cooling time appears (Figure 6). This indicates that the decay heat load in the CANDU®
decreases more rapidly with time than that of a light water reactor with enriched uranium fuel 
(for which the ANS-5.1 standard was developed). This may be a further confirmation of the 
inherent safety features of the CANDU® design. 

• The single bundle analysis (Figure 6) confirms the trend of rapid cooling in natural uranium 
fuel in a CANDU® system compared to enriched uranium fuel in a light water system. 

7.0 RECOMMENDATIONS 

• Further develop the code to improve DCYPWR and reduce uncertainties. 
• Validate the DCYPWR code using PLGS site data, collected during the shutdown for Outage 

2000. 
• Evaluate the overall uncertainty in applying the DCYPWR to decay power calculations for a 

CANDU® system. 
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Figure 1 - Effect of Neutron Capture in Fission Products - ANS-5.1-1994 
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Figure 3 — Full Core Decay Power — 8-Bundle Fuelling Strategy 

Reactor Channel Facemap for ANS 5.1 Channel Decay Power (kW), at decay time of 277.778 hours 
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The bulk thermal decay power was 3649.762 kW. 
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Reactor Channel Facemap for ANS 5.1 Channel Decay 
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Figure 5 — DCYPWR Code versus ANS-5.1 Examples 
Relative Error between DCYPWR Code and Examples in ANS-5.1-1994, Appendix B 
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Figure 6 — Decay Power in CANDU® versus Typical Light Water Reactor 
Relative Error between DCYPWR Code and Examples in ANS-5.1-1994, Appendix B 
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Figure 5 PWR Code versus ANS-5.1 Examples 
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Figure 6 Power in CANDU® versus Typical Light Water Reactor 
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