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In this paper, the Release by Diffusion  module of SOURCE 1ST 2.0 is discussed. 
The paper presents the physical processes modelled in this code module and 
discusses some of the numerical methods applied to the solution of the resulting 
equations. Application of Fick's Law requires solution of the concentration 
profile within the grain for isotopes of interest. which in turn requires modelling 
of isotope production through fission. decay of parent isotopes and neutron 
capture processes. isotope removal through radioactive decay and neutron 
capture, and transport via diffusion.  The central calculational driver for the 
Release by Diffusion  module, which evaluates the concentration profile. is the 
GrainDist subroutine and its sub-programs: its overall structure and place in the 
Release by Diffusion module is briefly described. The differential equation for the 
combined diffusion/depletion/production equation is discretized using a Crank-
Nicholson approach (i.e. second-order spatial discretization and first order 
temporal discretizatioro. The central node is approached differently: the 
boundary condition that the spatial derivative of the concentration profile must 
he zero at the centre of the grain is used to derive the numerical expression 
solved for. Some discussion is provided on the handling of precursor isotopes 
and their effect on the evolution of the concentration profile of isotopes of 
interest. Some testing of the module has been performed and an example is given 
in which the calculated release rate for 13 .1 is compared to an analytical solution 
for a range of intro-granular spatial discretizations. 

1. Introduction 

SOURCE 1ST 2.0 is a safety analysis code. currently in beta testing (Reference 1), which will model the 
mechanisms required to calculate fission product release from the fuel for a variety of accident scenarios. 
including large break loss of coolant accidents (LOCAs) with or without emergency core cooling and 
other design basis accidents. The goal of the model development is to generate models that are consistent 
with each other and phenomenologically based, insofar as that is possible given the state of theoretical 
understanding. SOURCE 1ST 2.0 is being developed by the Canadian nuclear industry as an Industry 
Standard Tool. 

One of the main processes which drive the fission product release is diffusional release from the fuel 
grains. The release rate RR of a fission product from the grain surface is eiven by Fick's Law: 

RR(t) = —S(t) • D(t) 
OC(r. t) 

ar 
where: 

r=ft 

r is the radial position within the grain (m) 

(1) 
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In this paper, the Release by Diffusion module of SOURCE IST 2.0 is discussed.
The paper presents the physical processes modelled in this code module and
discusses some of t h enumerical methods applied to the solution of the resulting
equations. Application of Fick's Law requires solution of the concentration 
profile within the grain for isotopes of interest. which in turn requires modelling
of isotope production through fission. decay of parent isotopes and neutron
capture processes, isotope removal through radioactive decay and neutron
capture, and transport via diffusion. The central calculational driver for the 
Release by Diffusion module. which evaluates the concentration profile. is t h e
GrainDist subroutine and its sub-programs: its overall structure and place in the
Release by Diffusion module i s  briefly described. The differential equationfor the 
combined diffusion/depletion/productionequation is discretized u s i n g  aa Crank- 
Nicholson approach ( i .e .e , second-order spat ial discretization und first order 
temporal discretization). The central node is approached differently:the 
boundary condition that the spatial derivative of the concentrationprofile must 
he zero at the centre o the grain is used to derive the numerical expression 
solved for. Some discussion is provided on the handling of precursor isotopes
and their effect on the evolutionof the concentration profile o f  isotopes of 
interest. Some testing o f  t h emodule has been performed and an example is given 
in which the calculated I-elease rate for 135I is comparedto an analyticalsolution 
for a range of intra-granular spatial discretizations.

SOURCE IST 2.0 is a safety analysis code. currently in beta testing (Reference 1)- which will model the 
mecIianisms required to calculate fission product release from the fuel for a variety of accident scenarios. 
including large break loss of coolant accidents (LOCAs) with or without emergency core cooling and 
other design basis accidents. The goal of the model development is to generate models that are consistent 
with each other and phe~~o~~~enologicalIy based. insofar as that is possible given the state of theoretical 
~tnderstanding. SOURCE IST 3.0 is being developed by the Canadian nuclear industry as an Industry 
Standard Tool. 

One of the rnain processes which drive the fission product release is diffusional release from the fuel 
grains. The release rate RR of a fission product fioiii the grain surface is give11 b>l Fick's Law: 

I ~ = K  
where: 

r is the radial position within the grain (111) 
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t is time (s) 
RR(t) is the release rate (atoms/s) 
S(t) is the surface area of the grain (in2) 
D(t) is the diffusion coefficient of the isotope in the fuel grains (m2/s) 
C(r,t) is the concentration profile (atoms/(m3)) 
R is the radius of the grain (m) 

For a given isotope, the change in concentration with time is affected by the following: 

1. The diffusion coefficient of the isotope in question, which is affected by the fuel temperature, 
temperature ramp rate, stoichiometric deviation and fission rate density 

I The removal rate of the isotope in question. which is affected by radioactive decay of the isotope 
and neutron capture of the isotope 

3. The production rate of the isotope in question, which is affected by the direct fission yield of the 
isotope and the intra-granular distribution of the isotope's parents (both via radioactive decay and 
neutron capture) 

The governing differential equation for the combined diffusion/depletion/production processes in 
spherical coordinates is: 

aC(r, t) 
= D(t) •

1 
r  

a2C(r, 0 2 aC(r, t) 

a 
) r 

+ lit, ÷ a • (0(0] • C(r, t) ar 2  ar

+ E Y FT . .fq + I f DP . X.DP . CDp (r. 0 + E am, . (i)(0 - C Np (r, t) 
Fl DI' NP 

where: 
is the decay constant of the isotope (1/s) 

a is the neutron capture cross-section of the isotope (m2) 
4)(0 is the neutron flux (neutrons/(m2•s)) 
YFI is the effective direct yield of the isotope from fissionable isotope Fl 

FF./ is the fission rate of fissionable isotope F1 
DP is an index for counting "decay parents-
f0 is the branching fraction for decay of isotope DP to the isotope 

XDP is the decay constant of isotope DP (1/s) 
Cop(r,t) is the isotopic concentration of isotope DP (atoms/m3) 
NP is an index for counting "neutron capture parents",
aN p is the neutron capture cross-section isotope NP (m`) 
CNr(r,t) is the isotopic concentration of isotope NP (atoms/m') 

(2) 

The solution of the above equation for each isotope of interest along each chain of related isotopes is the 
main task of the Release by Diffusion module and the focus of this paper. 

2. Overall Structure of the Release by Diffusion Module 

The overall structure (i.e. calling hierarchy) of the Release by Diffusion module is shown in Figure 1. 
SUBROUTINE Diffusion is the overall controlling, routine through which the Release by Diffusion 
module is accessed by the main program. Its primary function is to return to the calling routine the 
concentration profile of all of the isotopes in a series of decay chains at the end of a given interval. along 

t is time (s) 
RR(1) is the release rate (atoms/s) 
S(t) is the surface area of the grain (m') 

D(t) is the diffusion coefficient of the isotope in the fuel grains (m2/s) 
C(r,t) is the concentration profile (atoms/(m3)) 
R is the radius of the grain (~n) 

For a given isotope, the change in collcentration with time is affected by the following: 

1. The diffusion coefficierit of the isotope ill question, which is affected by the fuel temperature, 
temperature ramp rate. stoichiometric deviation and fission rate density 

3 -. The removal rate of the isotope in question, which is affected by radioactive decay of the isotope 
and neutron capture of the isotope 

3 .  The production rate of the isotope in question: which is affected by the direct fission yield of the 
isotope and the intra-granular distribution of the isotope's parents (both via radioactive decay and 
neutron capture) 

The governing differential equation for the co~nbined diffusion/depletion/production processes in 
spherical coordinates is: 

3;. is the decay constant of the isotope (Us) 
CJ is the neutron capture cross-section of the isotope (m') 

$(t) is the neutron flux (~~eutrons/(~n',s)) 
y~~ is tlie effective direct yield of the isotope from fissionable isotope FI 

F,, is the fission rate of fissionable isotope FI 
DP is an index for counting "decay parents'. 
f P  is the branching fraction for decay of isotope DP to the isotope 

hUP IS the decay constant of isotope DP ( I  /s) 
CDP(r.t) is tlie isotopic concentration of isotope DP (atoms/m3) 
NP is a11 index for counting .'neutron capture parents'' 

G~~ IS the neutron capture cross-section isotope NP (m2) 
CVP(r-t) is flte isotopic concentration of isotope NP (atoms!m") 

The solutio~l of the above equatioii for each isotope of interest along each chain of related isotopes is the 
[?lain task of the Release by Diffusiotl module and the focus of this paper. 

2. Overat1 Structure of the Release by Diffusion Module 

The overall structure ( i .e  calling hierarchy) of the Release by Diffusion modrile is shown in Figure I .  
SUBROUTINE Dzffurioi? is the overall co~ltrolling routine through which the Release by Diffusion 
module is accessed by the main program. Its primary functiol~ is to retorn to the calliilg routine the 
concentration profile of all of the isotopes i n  a series of decay chains at the end of a given intend. along 
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r 
with the diffusional release from the grain of all of these isotopes during this interval. It does this by 
calling Redist, GrainDist and then Integrate for each decay chain. If necessary. it may call GrainDist 
more than once in order to progress the solution over the entire time interval within the memory 
constraints of the array declarations. 

P 

r 
r 

r 
P' 

r 

r 
P 

r 

One of the major overall design considerations for the Diffusion program unit is the large memory 
requirements of GrainDist subroutine and its sub-modules. In order to help to contain these requirements. 
the GrainDist routine is designed to allow for a maximum number of time steps. In the event that this 
maximum number of steps is insufficient to progress the solution across the entire interval. GrainDist 
changes the value of the time interval which was passed to it to the value which it was possible to 
progress the solution through. If this occurs. the Diffirsion subroutine will subdivide the overall time 
interval as needed and call the GrainDist routine multiple times. Another, more significant contributor to 
memory efficiency is the use of sparse matrix techniques in handling the isotopic data for the isotopes in 
the chains. 

3. Numerical Method Applied to GrainDist Subroutine 

GrainDist and its subsidiary program modules (SUBROUTINES ABDBar, FindABCR, tridiag and 
StoreParent) are intended to solve the combined diffusion/depletion/production equation using a Crank-
Nicholson type discretization. This is a widely-used semi-implicit approach for solving the diffusion 
equation and so is a natural candidate for application to this more general problem. 

For the balance of the discussion of the combined diffusion/depletion/production equation. we will define 

A(t) = (X cr-4)(t)) and B(r. = Eyi:i • ..F1 IfDP .c,),(r,,),EaN, . 40) . C ,„,,p (r, t) • 
rt DP NP 

In discretization of the Equation (2), A(t), B(r.t) and D(t) must be handled carefully. Spatial discretization 
is handled in a simple manner. assuming a uniform spacing of nodes across the grain radius. This 
simplification was a design decision intended to reduce the complexity of the equations applied to the 
problem. but it is not the most computationally efficient way to provide sufficient detail near the grain 
surface. B(r.t) is a function of location and GrainDist is structured such that the parents' concentration 
profiles are always defined before their children's. The nodal mesh is common to all of the calculations 
for the chain (indeed, the nodal mesh is a constant across all chains for each time interval). 

Temporal discretization is more difficult. In principle, the discrete times for which data defining points 
for A(t), B(r.t) and D(t) are available could be widely varying among themselves and from the time 
discretization which yields a converged solution for the isotope being considered. Therefore, for any 

given radial node r3 and time point t,,. we define 5" , TI; and A . These represent the average value of 

D(t.). B(r,.t.) and A(t,) between t„_1 and t„. For calculation of D" . this is assumed to be equivalent to the 
value of D(t) for the average values of the underlying variables which drive the diffusion coefficient (such 
as temperature. temperature ramp rate, stoichiometric deviation, etc.). 

The Crank-Nicholson approach is to use a second-order discretization in space and a first-order 

discretization in time. If such an approach is combined with the use of the variables 5" tii;' and A" 

using a nodal mesh of jMax elements. for all radial nodes except rjma, (the grain surface) and r1 (the grain 
centre), the resulting equation is as follows: 

will1 the diffusional release from the grain of all of these isotopes during this interkal. It does this by 
calling Redist. GruirlDisl and then Inregrate for each decay chain. If necessary. it may call G~.ainDist 
more than o ~ ~ c e  in ordcr to progress the solution over the entire time interval within the melnory 
constraints of the array declarations. 

One of the major overall design considerations for the Dzfision program unit is the large memory 
requirements of GrcrinDist subroutine and its sub-modules. In order to help to contain these requirements. 
the Gt-uinDisl routine is designed to allow for a maximum number of time steps. In the event that this 
masinlum number of steps is insufficient to progress the solution across the entire interval. GrczinDisf 
changes tile value of the t in~e interval which was passed to it to the value wllich it was possible to 
progress the solution through. If this occurs, the D@aion subroutine will subdivide the overall time 
intet-val as needed and call the Grnird3is1 routine inultiple ti111es. Another, ]nore significant contributor to 
memoly efficiency is the use of sparse matrix techniques in handling the isotopic data for the isotopes in 
the chains. 

3. IYumerical  method Applied to GruirtDi.sf Subroutine 

GrainDisf and its subsidiary program modules (SUBROUTINES ABDBav, Fir7dABCR. ~ z d i a g  and 
StoreP~.rrenf) are intended to solve the combined diffusion/depletion/production equation using a Crank- 
h;icholson type discretization. This is a widely-used serni-implicit approach for solving the diffusion 
equation and so is a nati~ral candidate for application to this more general problem. 

For the balance of the discussion of the combined diffusion/depletio~~productian equation. we will define 

.4(t) = ( I .  - o-$(t)) and B(r. t) = y ,, . F,, + f,,, - A ,, . C,, (r? I) i o ., $(t) . C , (r. t )  . 
FI DP NP 

I n  discretization of the Equation (2). A(t), B(r.t) and D(t) must be hand led carefully. Spatial discretization 
is handled in a simple Inannet-. assuming a uniform spacing of nodes across the grain radius. This 
simplification was a design decision intended to reduce the coinplexity of the equations applied to the 
problem, but it is not the 111ost con~putationally efficient way to provide sufficient detail near the grain 
surface. B(r,t) is a function of location and GraiizDist is structured such that the parents' concentration 
profiles are always defined before their children's. The nodal mesh is colnmon to all of the calculatior~s 
for the chain (indeed, the nodal mesh is a coristant across all chains for each time interval). 

Ten~poral discreti7~tion is more difficult. I11 principle. the discrete times for which data defining points 
for A(t). B(r.t) and D(t) are available could be widely varying among themselves and from the time 
discretization which yie Ids a converged solution for the isotope being considered. Therefore. for any 

civen radial node r, and time point t,,. we define En. Bf and A" . These represent the average value of 
C 

D(t,.). Btr , .~) and A(t,.) between t,,.l and t,. For calculatio~~ of B" . this is assumed to be equivalent to the 
value of D(t) for the average values of the underlying variables which drive the diffusion coefficient (such 
as tern pcrature. temperature ramp rate, stoich iometric deviation, etc.). 

The CI-anli-Nicholson approach is to use a second-ordrr discretization i n  space and a first-order 

discretization in time. If such an approach is combined with the use of the variables 5" . and A'' 
using a nodal mesh of jMax elements. for all radial nodes except 1;klas (the grain surface) and rl (the grain 
centre). the resulting equation is as follows: 
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-r —I— + 
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+ — — +—!•C".,.1 +13!' 
(4) 

2. Or Ar 2r 2 [fir - At" / • Ar Ar /rj

This can be expressed as a matrix equation M u = r, where the vector u is composed of the nodal 
concentrations. r is the vector of the right hand sides of the equations and M is a tri-diagonal matrix 
containing the equation coefficients. The matrix M can be expressed using three vectors a. b and c rather 
than a full array. where a represents the sub-diagonal of M (i.e., aj = Mi, j = 2... jMax- I). b the 
diagonal of M (i.e., bi = Mi, j. j = 2...jMax- ) and c the super-diagonal of M (i.e.. cj =Mj. 
j = I .. .jMax-2). As can be seen from the equations above, M is diagonally dominant. which means that a 
simple solution technique can be applied, which requires only matrix decomposition, forward substitution 
and back-substitution. No pivoting is required (see Reference 2). 

In order to complete the matrix equation, expressions for j= jMax and j=1 need to be determined from the 
boundary conditions. The boundary condition which applies at the surface of the grain is simple. For 
.i=jMax: 

Cij‘lax = 0 (5) 

The boundary condition at the centre of the grain is that oC(r, t) =0. The partial derivative can be 
ar r=0 

approximated with a second order discretization. If the boundary condition is applied, we are left with the 
following expression for j=1: 

-3.Cr +4'C' 1 —C3+1 =0 (6) 

If this expression is used. then the resulting matrix equation for the entire nodal mesh is no longer tri-
diagonal. which means that the simple tri-diagonal solver could no longer be applied. However, recall 
that. if Equations (3) and (4) are re-written using a, b, c and r for j=2. we obtain: 

"I! 

a, +b 2 • C';+ I +c, • C'""I =r, 
(7) 

If we multiply Equation (6) by ci and then add Equation (7) to it, we get the expression for j=1 which 
allows us to preserve a tri-diagonal matrix solution technique. 

For j=1: 

(a, —3.c 2 )•C;'+' + (b, + 4 .c2 )- =r, (8) 

spherical grains (3) 

"infinite" 
cylindrical grains 

(4) 

This can be expressed as a matrix equation M - u = r, where the vector u is composed of the nodal 
concentratiotls. r is the vector of the right hand sides of the equations and M is a tri-diagonal matrix 
containing the equation coefficients. The n~atris 3% can be expressed using tllrec vectors a. b and c rather 
than a full array, where a represents the sub-diagonal of M (i.e., a, = M,. j-, ,  j = 2.. .jMax- 1). b the 
diagonal of M ( i . .  b, =&Ij. ,. j = 2. . . jMa.-I)  and c the super-diagonal of M (i.e.. cJ = M,. 
j = 1 . . . j Max-2). As can be seen fro111 the equations above, M is diagonal 1 y dorn inant. w17 ich means that a 
simple solution technique can be applied. which requires only matrix decomposition, forward substitution 
and back-substitution. hTo pivoting is required (see Reference 2). 

In order to complete the matrix equation, expressiol~s for j= jMax and j=l need to be determined from the 
boundary conditions. The boundary condition which applies at the surface of the grain is simple. For 
j=j Max: 

The boundary cotidition at the centre of the grain is that = 0 .  The partial derivative can be 

approximated with a second order discl-etization. if the boundary condition is applied. we are left with the 
following expression for j=l : 

If this expression is used, then the resulting matrix equation for the entire nodal mesli is no longer tri- 
diagonal. which means that the simple tri-diagonal solver could no longer be applied. However, recall 
that. if Equations (3) and (4) are re-written using a: b. c and r for j=2. we obtain: 

If we ~nulriply Equation (6) by c . ~  and then add Equation (7) to it. we get the expression for j=l whicl~ 
allows us to preserve a tri-diagonai matrix solutioxi technique. 

For j= 1 : 
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hi order to solve the tri-diagonal matrix equation above. a value of At° must be assumed. If the value of 
Ate° is too high. a converged solution will not be achieved and calculational results will be meaningless. If 
At- is too small, needless computational effort will be wasted without any significant improvement in the 
accuracy of the solution. Therefore, a convergence loop must be defined to set M' as large as possible 
consistent with an accurate solution. The convergence loop needs to have a minimum concentration 
below which convergence is assumed. This is set in GrainDist to be that concentration at which there is 1 
atom of the isotope in question within the nodal volume. For all nodes whose concentrations are above 
this minimum, the convergence criterion is that the nodal concentrations at t+At, using one step of size At^ 
and two steps of size At./2 all agree within the tolerance set by the variable Cony (currently set to I.10-6). 

When a converged time step is achieved, a mechanism is required which will attempt to increase the time 
step as possible to increase calculational efficiency. The time step logic for GrainDist is shown in Figure 
2. The approach is to reduce the time step until convergence is achieved and to attempt to increase it only 
when two successive trials of the same time step are both successful. 

Note that evaluating the value of for a given isotope requires evolution of the concentration profile of 
all of the parents of the isotope in question. This implies that, for some isotopes, the entire transient 
evolution of the concentration profile will need to be stored until it is used to evaluate the evolution of a 
chi Id. 

Associated with the diffusion modelled above will be a release of fission products from the grain. 
Equation (1) shows that the release rate RR(t) from the surface of the grain is equal to: 

RR(t)= —4 • ic • rx, • D(t) 
OC(r.t) 

Or r=r,,4, 

RR(t) = —2 • it L • D(t) 
aqr, t)

ar 

where: 
r 

L is the grain length (m) 

The value of 
aC(r, t)'

ar 

spherical grains (9) 

"infinite" cylindrical 
grains (1 0) 

can be evaluated for each time step using the concentration profile which is 

determined for that time step by solving the tri-diagonal discretization of the combined diffusion/-
depletion/production equation. The approach taken is to fit a second-order polynomial through the Cr-2. 
ciNr-' and CP' (recall that CiNr = 0) and solve for the slope of the polynomial at the grain surface. This 
approach is equivalent to using a second-order backward-difference approximation to the first derivative. 

4. Testing of the Release Rate Calculation 

The Release by Diffusion module has been tested by comparing its results against a known analytical 
solution for a range of different node mesh densities. Consider the steady-state solution for the 
concentration profile of the first member of a decay chain for the diffusion of a radioactive fission product 
from a spherical fuel grain (see Reference 3): 

C(r)= 
r • sinh(c(R) 
R • sinh(ccr))

111 order to solve the tri-diagonal matrix equation above. a value of AP must be assumed. If the value of 
Ati is too high. a converged solution will not be achieved and calculational results will be meaningless. If 
Att is too small, needless coti~putational effort will be wasted witllout any significant improvement in the 
accuracy of the solution. Therefore. a convergence loop must be defined to set AT: as large as possible 
consistent with an accurate solution. The convergence loop needs to have a minimuin concentration 
below which convergence is assumed. This is set in GrainDist to be that concentration at which there is 1 
atom of the isotope in question within the nodal volume. For all nodes whose concentrations are above 
this minimum, the convergence criterion is that the nodal concentrations at t+Attl using one step of size A r  
and two steps of size AP/2 all agree ithin the tolerance set by the variable Conv (currently set to I - 10'"). 

When a converged time step is achieved. a rnecl~anism is required which will attempt to increase the time 
step as possible to increase calculational efficiency. The time step logic for GraitzDis! is shown in Figure 
3. The approach is to reduce the time step until convergence is achieved and to attempt to increase it onl?~ 
wtl~en two sriccessive trials of the same time step are both successful. 

Note that evaliiating the value of g;' for a given isotope requires evolution of the concentration profile of 
all of the parents of the isotope in question. This implies that for some isotopes, the entire transient 
evolution of the co~lce~ltration profile will need to be stored until it is used to evaluate the evolution of a 
child. 

Associated with the diffusion rnodelled above will be a release of fission products from the grain. 
Equation (1) s h o ~ ~ ~ s  that the release rate RR(t) from the surface of the grain is equal to: 

RK(t) = -2 , x . r,, - L - D(t) . - 

where: 
L is the grain length ( n ~ )  

spherical grains (9) 

"infinite" cylindrical 
grains (1 0) 

CC(l-, t) '  
The value of - can be evaluated for each time step using the concentration profile ~vhich is 

ar r a h ,  

detem~ined for that time step by solving the tri-diagonal discretization of the combined diff~ision'- 
depletion/production equation. The approach taken is to fit a second-order polynomial through the c;"'~. 
c,"" and c," (recall that c,~' = 0) and solve for the slope of the polynomial at the grain surface. This 
approacll is eqi~ivalent to using a second-order backward-difference approximation to the first derivative. 

3. Testing of the Release Rate Calculation 

The Release by Diffusion module has been tested by comparing its results against a known analytical 
solution for a range of different node mesh densities. Consider the steady-state solution for the 
concentration profile of the first member of a decay chain for the diffusion ofa radioactive fission product 
from a spherical fuel grain (see Reference 3): 
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where: 
C(r) is the steady state concentration (atoms/m3), 
r is radial position between 0 and R (m). 
B is the production (birth) rate from fission (atoms/(m3.$)), 
X is the decay constant of the nuclide (1/s), 
R is the radius of the spherical grain (m), 
a is the "lumped" constant (?JD)" (1/m) where D is the diffusion coefficient (m2/s). 

The derivative of this expression, when evaluated at r=R. is: 

aC(r) 

ar r=lt 

B.Ri 1 

; 4, R • tanh(aR) 

and the resulting release rate can be calculated from Equation (1) 

(12) 

Using a fission rate of 1.55-1019 1/s, a yield of 6.28%, X=2.93- 0'5 1/s, R=20 p.m and D=2.4-10-18 1/(m2-s). 
the release rate of [-135 can be calculated to be 1 .4.10' atoms per second. In Figure 3. the fractional 
difference between this value and the prediction given by running TestDff as a function of number of 
nodes in the grain is given. Convergence to within 1% is achieved by 400 nodes. 

5. Conclusion 

As part of the SOURCE 1ST 2.0 development effort, the Release by Diffusion module has been 
developed. This module applies a Crank-Nicholson type discretization to the combined diffusion/-
depletion/production equation. Testing of the module indicates that it provides excellent agreement with 
the analytical solution of the steady-state release rate of the first element in a chain. 

The Release by Diffusion module provides SOURCE 1ST 2.0 with the capability to model one of the 
main engines of fission product release. No previous CANDU fission product release code has 
represented the combined processes of isotope generation via fission of multiple actinide isotopes. decay 
and neutron capture; isotope depletion via decay and neutron capture: and diffusion of the isotope 
together in as physically representative a manner as this module does. The incorporation of this capability 
into SOURCE 1ST 2.0 contributes significantly to the fact that this code. when released. will be capable 
of far more detailed and representative assessments of fission product release than any code which has 
been used in the past in the Canadian nuclear industry. 
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where: 
C(r) is the steady state concentration (atoms/m3), 
r is radial position between 0 and R (m), 
B is the production (birth) rate from fission (atoms/(mxs)), 
h is the decay coustant of the r~~lclide (I/s). 
R is tlle radius of the spherical grain (m), 
a is the b'lumped" constant (IJD)" ( l lm)  where D is the diffusioi~ coefficient (m?/s. 

The derivative of this expressio~i. when evaluated at r=R. is: 

alld the resulting release rate can be calculated from Equation ( 1  ) 

Using a fission rate of 1.55- 1 019 11s. a yield of 6.28%. k=2.93- I@' l/s, R=20 pm and D=2.4 1 0-Is 1/(m2-s). 
the release rate of 1- 135 can be calculated to be 1.4.10' atoms per second. In Figure 3, the fractional 
difference between this value and the prediction given by running TeslDlflas a function of number of 
nodes in the grai~l is given. Convergence to with in 1 % is achieved by 400 nodes. 

.4s part of the SOURCE IST 2.0 development effort. the Release by Diffusion module has been 
developed. This module applies a Crank-N icholson type discretization to the combined diffusion/- 
depletion/productio~~ equation. Testing of the  nodule indicates that it provides excel lent agreement with 
the analytical solution of the steady-state release rate of the first element in a chain. 

The Release by Diffusion module provides SOURCE IST 2.0 with the capability to model one of the 
tnain engines of fission product release. No previous CANDU fission product release code has 
represented the combi~ied processes of isotope generation via fission of multiple actinide isotopes. decay 
and neutron capture; isotope depletion via decay and neutron capture: and diffusion of the isotope 
together in as ph\-;sically representative a manner as this module does. The it~corporation of this capability 
into SOURCE ?ST 2.0 contributes significantly to the fact that this code. wlicn released. will be capable 
of far more detailed and representative assessnlents of fission product release than any code ~ h i c h  has 
been used in the past in the Canadian nuclear industry. 
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Call in u 
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(Mainline) 
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tdctenrines conceturat ion profiles 
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SUBROUTINE A BDI3ar 
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bra given chain. giv [eel 
conditions. tins: and time step ) 

FUNCTION DiliCoef 
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SUBROUTINE StoreParent 
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the decay chain) 

Figure 1: Calling Hierarchy of Program Modules in the Release by Diffusion Module Fig~lre 1: Calling Hierarchy of Program Modules in the Release by Diffusion Module 
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dt=Interval, 
Last IP ass= 

TRUE. 
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Pro rt ess concentration 
profile using one sep of 

size dt 
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profile using two st4isof 

size dt 
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Progress con cult rat ion 
profile usingmo SLTS0f 

size dt 

Converged? 

Yes 

No C End of rine step ) 
loop 

dt =dt .2: max dt is 
Interval-t 

Figure 2: Time Step Control Logic for GrainDist 
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size dt 

I i l Yes . - 

dt-dt.2: max dt is 
I~llerval-t 

6 1 

End ofthnc step 

1 I 

Figure 2: Time Step Control Logic for GrainDist 
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