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ABSTRACT 

Production of 19-element zircaloy clad natural uranium oxide fuel bundles for Pressurised 
Heavy Water Reactors (PHWR) of 220 MWe type in India is being carried out at Nuclear 
Fuel Complex (NFC) at Hyderabad since June, 1973. During the last 26 years, more than 
1,75,000 fuel bundles have been fabricated and supplied by NFC to Nuclear Power 
Corporation of India Limited (NPCIL) for use in PHWR 220 units. In the financial year 
1998-99 (April 1998 - March 1999), NFC produced 20,157 fuel bundles (306 tons), which is 
the highest annual production since the inception of NFC. For the year 1999-2000, a 
production target of 23,500 fuel bundles (around 350 tons) has been set, of which nearly 175 
tons have been fabricated till the middle of September 1999. In the last few years, at NFC, 
efforts are being made to augment safety, fuel quality, automation and productivity. The in-
pile performance of PHWR fuel produced in NFC has improved progressively over the years. 
By the end of the year 2000, twelve PHWR 220 MWe would be operational in India for which 
the fuel and the zircaloy structurals would continue to be fabricated at NFC. In parallel, a new 
project has been initiated for fabrication of 37-element zircaloy 4 clad natural uranium oxide 
fuel bundles for the forthcoming twin units of PHWR 500 MWe at Tarapur Atomic Power 
Station (TAPS - 3 & 4). 

1.0 INTRODUCTION 

Nuclear Power is an inevitable energy option for India in the next millenium. The raw 
materials for nuclear power programme, namely, uranium and thorium occur 
disproportionately in India. According to the recent reports (1,2) of the Atomic Minerals 
Directorate of Exploration and Research (AMD), the proven reserves of uranium, thorium and 
zirconium in India are 92,000 tons U308, 5,90,000 tons ThO2 and 18 million tons zircon 
respectively. For judicious utilisation of limited uranium but vast thorium resources, the 
Department of Atomic Energy (DAE) in India is pursuing a three stage nuclear power 
programme, with a closed fuel cycle, linking natural uranium-fuelled Pressurised Heavy 
Water Reactors (PHWR) in the first stage with mixed uranium (depleted) plutonium-fuelled 
Liquid Metal Cooled Fast Breeder Reactors (LMFBR) with thorium blanket in the second 
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stage. The U 233 produced in LMFBRs would be used in the third stage in Advanced Heavy 
Water Reactors (AHWR), which would be operated on self sustaining Th232-U233 fuel cycle. 

During the last three decades, India has achieved self-reliance in the front and back ends of 
the nuclear fuel cycle. These include: 

• Exploration and Mining of uranium and thorium. 
• Production of nuclear grade, sinterable UO2 powder from low grade uranium ores and 

Production of high density UO2 fuel pellets. 
• Production of nuclear grade ThO2 powder starting from monazite sand and Fabrication 

of high density ThO2 pellets. 
• Production of hafnium-free nuclear grade zirconium sponge from zircon sand and 

Fabrication of zirconium alloy ingots and components. 
• Production of zirconium alloy clad natural uranium oxide fuel bundles for PHWRs. 
• Production of zirconium alloy clad thoria assemblies for neutron flux flattening in the 

initial core of PHWRs during start up. 
• Reprocessing of spent UO2 fuel from PHWRs for recovery of plutonium and depleted 

uranium. 
• Reprocessing of thoria bundles from PHWRs for recovery of U 233. 

• Fabrication of zirconium alloy clad mixed uranium plutonium oxide (MOX) fuel for 
water-cooled reactors and stainless steel (type 316) clad, mixed uranium plutonium 
monocarbide (MC) fuel for LMFBR. 

• Treatment and management of radioactive wastes. 

2.0 PHWR PROGRAMME 

PHWR is the backbone of the nuclear power programme in India. Presently, eight PHWR 
units of capacity 220 MWe each (a few units have been derated) are in operation contributing 
1520 YfWe. Four more PHWR 220 units would be connected to the grid before the turn of the 
century, two each at Kaiga Atomic Power Station and Rajasthan Atomic Power Station 
(RAPS - 3 & 4). Construction activities of two units of PHWR 500 MWe have started at 
Tarapur Atomic Power Station (TAPS 3 & 4) in October 1998. DAE has set a target of 
installing 20,000 MWe nuclear power by the year 2020 in which there would be 14 units of 
PHWR 220 and 12 units of PHWR 500 (3). 

3.0 MINING, EXPLORATION AND CONCENTRATION OF 'IP ORE 

Presently, three underground uranium mines at Jaduguda, Bhatin and Narwapahar in the 
Singhbhum District of Bihar State in the eastern part of India are in operation. These three 
deposits contain low grade ores with uranium in the range of 0.04 to 0.06% only. The uranium 
exploration activities have been enhanced in other parts of the country. During 1998-99, in 
Gulbarga district of Karnataka State, bore-wells in Gogi have intercepted high grade (upto 1% 
U30 8) uranium mineralisation associated with brecciated limestone of Bhima basin. 
Extensive radiometric and magnetic surveys are also under way in Cuddapah basin in Andhra 
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Pradesh State at Lambapur and Banaganapalli. Additional uranium reserves were confirmed at 
Wahkyn in Meghalaya State. In-situ leaching technology has been initiated in the sand stone 
deposits of Domiasiat in Meghalaya State. 

The Uranium Corporation of India Limited (UCIL), a public sector undertaking (PSU) 
under DAE, is responsible for the production of magnesium-di-uranate (MDU) concentrate 
from uranium ore. The Jaduguda mill of UCIL processes about 2000 tons of ore per day from 
which around 200 tons of uranium, in the form of MDU or yellow cake, are produced 
annually. The ore is crushed and milled and subjected to sulphuric acid leaching followed by 
ion exchange refining and precipitation of MDU. The MDU contains about 70% U30 8, which 
is sent to Nuclear Fuel Complex (NFC) at Hyderabad for further purification and production 
of high density UO2 fuel pellets by the classical "powder metallurgy" route. 

lai 

4.0 PHWR FUEL DEMAND AND PRODUCTION IN INDIA: 

Po From its inception in the year 1971, NFC has produced more than 2600 metric tonnes of 
natural uranium oxide fuel for the PHWR 220 units, operated and maintained by NPCIL. 
During the year 1998-99, NFC has produced 20,157 fuel bundles (306 tons), which is the 
highest annual fuel production since the inception of NFC. Thus, the fuel requirement of 
eight operating PHWRs and the two forthcoming PHWR 220 units at Kaiga (Kaiga 2) and 
Rawatbhata (RAPS 3) has been met. The annual production of natural UO2 fuel bundles for 
PHWRs during the last few years in NFC is shown in Figure 1. Kaiga 2 has attained 
criticality on September 24, 1999 and RAPS 3 would attain the same by the end of 1999. The 
annual production of natural UO2 fuel bundles for the year 1999-2000 is likely to cross 23,500 
(350 tons) and meet the reload fuel requirements of operating stations and also the fuel needed 
for the initial cores of the two forthcoming PHWR 220 reactors at Kaiga (Kaiga 1) and 
Rawatbhata (RAPS 4). Kaiga 1 and RAPS 4 are likely to be commissioned by the third 
quarter of the year 2000. In order to cater to the fuel demand for PHWR 220 and PHWR 500 
units in India, NFC has drawn up the fuel manufacturing schedules, which is indicated in 
Figure 2. 

•• 

Zircaloy-4 cladding tubes, end plugs, bearing and spacer pads for the PHWR fuel elements 
and end plates for the 19-element fuel bundles are produced in NFC, starting with zircon sand. 
Figure 3 summarises the essential steps followed in NFC for the production of nuclear pure, 
hafnium-free zirconium sponge from zircon sand. The zircon sand is leached with NaOH for 
removal of silica. Next, the hafnium is removed by solvent extraction process using tributyl 
phosphate (TBP). Hf-free ZrO2 powder is subjected to carbothermic chlorination to form 
ZrCl4, which is subjected to magnesio-thermic reduction, employing the Kroll's process for 
production of nuclear pure zirconium sponge. During the year 1998-99, NFC produced 165 
tonnes of reactor grade zirconium sponge, which is the highest annual production of 
zirconium sponge since the inception of NFC. A new zirconium sponge plant would be 
constructed by March 2001 at NFC. Demonstration trials are underway for electrolysis of 
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MgCl2 (reaction product of Kroll's process) for recovery and recycling of magnesium and 
chlorine. 

The zirconium sponge is alloyed with tin, iron, chromium and oxygen and subjected to 
double-melting in a vacuum-arc-furnace using consumable electrode. The ingots are hot-
extruded and subjected to pilgering, rolling and swaging with intermediate vacuum annealing 
to obtain thin-walled zircaloy-4 tubes, sheets and bars- respectively. The process flow sheet 
followed in NFC for the production of zircaloy-4 cladding tubes, sheets and rods needed for 
PHWR fuel assemblies, is summarized in Figure 4. The fuel cladding tubes are coated with 
graphite on the inner surface. 

4.2 Production of UO2 fuel pellets and fuel bundles at NFC: 

The process flowsheet followed in NFC for fabrication of PHWR 220 fuel is summarised in 
Figure 5. At NFC, the as-received MDU from UCEL is converted into nuclear pure 
ammonium-di-uranate (ADU) by the wet chemical route, involving dissolution of MDU in 
nitric acid, purification of uranium solution by solvent extraction (using tributyl phosphate) 
followed by precipitation of ADU by addition of ammonium hydroxide. The ADU is 
subjected to controlled calcination in air, followed by hydrogen reduction and stabilisation to 
obtain sinterable grade UO2 powder of desirable specific surface area, particle size, and 
oxygen to uranium ratio(4). The high density UO2 fuel pellets for the PHWR units are 
manufactured by the classical cold-pelletisation of UO2 powder in multi-punch hydraulic 
presses followed by high temperature sintering in reducing atmosphere (5). Finally, the fuel 
bundles are manufactured by employing specialised resistance welding, machining and 
assembling operations. A special mention may be made here regarding attachment of 
appendages to fuel element by resistance welding techniques, which is unique to Indian fuel 
and found to be cost-effective, eco-friendly and technically superior to conventional beryllium 
brazing. 

The New Uranium Oxide Fuel Plant (N1JOFP) for production of additional quantities of 
UO2 powder and sintered UO2 pellets and New Uranium Fuel Assembly Plant (NUFAP) for 
the manufacture of fuel bundles have been commissioned at NFC in 1998. The production 
activities in these plants are now in full swing. 

For manufacturing zircaloy-4 clad UO2 fuel element and fuel bundles, great emphasis has 
been given towards automation and development of indigenous equipment. Presently, several 
such equipment are in operation for graphite coating, resistance welding of end plugs, spacers 
and bearing pads, cleaning of fuel elements and manufacturing of fuel bundles. 

4.3 Production of Thoria Bundles: 

Any long term nuclear power programme in India has to be based on judicious utilisation of 
vast thorium resources in thermal and fast reactors. In order to build up a data base on the 
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fabrication, in-pile performance and reprocessing of thoria, a decision was taken to introduce 
itu thoria bundles, in a modest way, during initial start up of PHWRs for neutron flux flattening. 

For fabrication of ThO2 bundle, MgO-doped (MgO as 'sintering aid') sinterable grade ThO2
powder is obtained from Indian Rare Earths Ltd. (IRE) as starting material. High density 
thoria pellets are fabricated in the Nuclear Fuels Group at Bhabha Atomic Research Centre 
(BARC), Mumbai by cold-pelletisation and sintering. At NFC, thoria pellets are stacked and 
encapsulated in zircaloy-4 cladding tube. 

Pla 
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From Kakrapar Atomic Power Station (KAPS) onwards, zircaloy clad ThO2 bundles are 
being used in place of depleted UO2. The 19-element ThO2 bundles are similar to the natural 
UO2 fuel bundles. The in-pile performance of ThO2 bundles have been satisfactory in NAPS 
2, in the two units of Kakrapara Atomic Power Station (KAPS 1 & 2) and in Rajasthan 
Atomic Power Station (RAPS 2 re-started after coolant channel replacement). Hence, ThO2
bundles are being used in Kaiga 2 and RAPS 3 and would also be used in all forthcoming 
PHWR units in India. 

4.4 Quality Control of PHWR fuel at NFC: 

From the inception of nuclear fuel fabrication programme at NFC, a lot of emphasis has 
been laid for quality control procedures, including delivery checks of raw materials, 
qualifying equipment and plant personnel, evaluation of process intermediates and final 
products, and systematic documentation. The major quality checks are as follows: 

• UO2 Powder Specific surface area, particle size 
distribution, oxygen to uranium atom 
ratio, chemical purity and 
sinterability. 

• UO2 Pellets Dimensions, density, microstructure, 
surface integrity and chemical purity 
(emphasis on 'H' and equivalent 
boron contents). 

• Zircaloy-4 Cladding Tubes Dimensions, flaw evaluation, 
(ultrasonic and eddy current testing) 
mechanical properties, microstructure 
& texture (including hydride 
orientation, 'ff,' ratio, phase content 
and grain size), and chemical purity. 

• Graphite Coating on Zircaloy-4 
Cladding Tubes 

Coating thickness and adherence. 
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• Zircaloy-4 clad 
with Appendages 

Fuel Element UO2 stack length and weight, 
Integrity (He-leak & ultrasonic 
testing of welds) weld metallography 
(for qualification), weld strength of 
appendages. 

• Fuel Bundle Visual examination, dimensional 
checks, 'He'-leak testing, weld 
strength of end plate (for 
qualification), surface contamination, 
weight. 

Recently, a programme for obtaining ISO 9002 certification has been initiated at NFC and 
the certificate is likely to be obtained by the middle of the year 2000. 

5.0 PHWR FUEL PERFORMANCE: 

The Nuclear Power Corporation of India Limited (NPCIL) is responsible for the design, 
construction and operation of nuclear power stations in India. During the period from April 
1998 to March 1999, the gross generation of electricity from the eight operating PHWRs and 
the two Boiling Water Reactors (BWR 160 MWe) have been 12,000 million kilowatt hour 
units. The average capacity factors of these reactors have been 75%. The capacity factor has 
been 88%, 89% and 91% respectively for RAPS 2, NAPS 1 & 2, KAPS 1 & 2 during the 
period from April 1999 - June 1999 (6). The eight PHWR units in India have so far achieved 
more than 15,000 full power days of operation. More than 1,75,000 natural uranium oxide 
fuel bundles fabricated by NFC have been loaded in these reactors so far. The overall fuel 
failure rate has been less than 0.087% in the year 1997-98 and practically zero during 1998-
99. The 1-131 activity in coolant channels in all the stations has been less than 2.0 IA Ci/liter. 
The average discharge burn-up for the PHWR fuel in India is in the range of 6150 MWd/Te 
`LP and 7100 MWd/Te `U' and the maximum discharge fuel burn up has been 15,200 
MWd/Te 

6.0 DEVELOPMENTAL ACTIVITIES: 

The research and development back up for the PHWR programme in India is provided by 
BARC. The thrust in the fuel fabrication programme of NFC has been to continuously 
improve the safety of the plants, quality of the product, productivity and reduction in fuel 
fabrication cost. For this, the following programmes are underway: 

• A spray drier has been installed in NUOFP in order to obtain dust-free and free-
flowing ADU and minimise radioactive aerosol. In the old uranium oxide plant, turbo 
drier is in use; 

Recently, a programme for obtaining IS0 9002 certification has been initiated at NFC and 
the certificate is likely to be obtained by the middle of the year 2000. 
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MWd/Te 'U'. 

6.0 DEVELOPMENTAL ACTIVITIES: 

The research and development back up for the PHWR programme in India is provided by 
BARC. The thrust in the fuel fabrication programme of NFC has been to continuously 
improve the safety of the plants, quality of the product, productivity and reduction in fuel 
fabrication cost. For this, the following programmes are underway: 

A spray drier has been installed in NUOFP in order to obtain dust-fiee and fiee- 
flowing ADU and minimise radioactive aerosol. In the old uranium oxide plant, turbo 
drier is in use; 
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• One of the rotary furnaces so far used for air-calcination of ADU to obtain UO3 is 
being modified to carry out simultaneously calcination of ADU, reduction of UO3 
and stabilization of UO2 in one step; 

• For minimising radioactive aerosol and energy cost, the Sol-Gel Microsphere 
Pelletisation - Low Temperature Oxidative Sintering (SGMP-LTS) process (7,8) is 
being implemented on a pilot plant scale at BARC. The SGMP-LTS process is dust-
free, avoids generation and handling of radioactive aerosol, facilitates automation in 
pellet production and minimises the fuel pellet fabrication cost by employing low 
temperature (— 1200° C), short duration (1 hour) sintering in oxidative atmosphere. 
Ammonia internal gelation process using hexamethylene tetramine (HMTA) as 
ammonia generator and silicon oil at 90°C as gelation bath have been used to obtain 
dust-free and free-flowing hydrated gel-microspheres, which after controlled 
calcination produce soft and porous UO2 microspheres which could be directly 
pelletised. A low temperature pusher type continuous sintering furnace has been 
indigenously manufactured and installed in BARC. This furnace has a densification 
zone and reduction zone with a nitrogen curtain in between. The sintering of the UO2
pellets take place in the densification zone which is maintained at an atmosphere of 
nitrogen and air mixture containing less than 1000 ppm oxygen. The reduction zone 
consists of nitrogen and hydrogen mixture for controlling the stoichiometry of UO2 
pellets after densification. The UO2 pellets fabricated in this indigenous furnace are 
of high density (> 96% T.D.) and contain uniformly distributed, closed, spherical 
pores in the ideal diameter range of 2 to 5 microns. 

• Trials are underway for direct and dry conversion of sintered UO2 pellets, which 
conform to all chemical specification but are rejected due to surface defects or 
density mismatch, to sinterable UO2 powder by controlled oxidation and reduction; 

• Hot vacuum (— 300°C) degasing of UO2 pellets prior to encapsulation would 
minimise moisture and other hydrogen bearing impurities in pellets, which in turn 
would avoid internal hydriding of fuel elements; 

• 100% ultrasonic testing of the weld region of resistance welded fuel element is being 
introduced in order to intercept any weld defect and also to phase out the destructive 
metallography technique for evaluating set up and process welds in each shift; 

• A new sequence of fuel element and fuel bundle fabrication is being developed. The 
present practice is to load sintered UO2 pellets in graphite coated fuel cladding tube, 
close both ends of the tubes by resistance welding and then to attach spacers and 
bearing pads on fuel elements by resistance welding. In this method, it is very difficult 
to salvage sintered pellets from rejected fuel element. In addition, the pellets inside 
the fuel element may chip because of several handling steps after encapsulation. In 
order to resolve this problem, demonstration trials are underway to weld (resistance 
welding) bearing and spacer pads on graphite coated fuel cladding tube and use these 
tubes for loading and encapsulation of UO2 pellet stacks. Figure 6 depicts a pictorial 
sequence of the existing and proposed process steps for assembling fuel bundles. 
Initial trials have yielded very encouraging results. 

One of the rotary furnaces so far used for air-calcination of ADU to obtain U03 is 
being modified to carry out simultaneously calcination of ADU, reduction of U03 
and stabilization of U02 in one step; 
For minimising radioactive aerosol and energy cost, the Sol-Gel Microsphere 
Pelletisation - Low Temperature Oxidative Sintering (SGMP-LTS) process (7,s) is 
being implemented on a pilot plant scale at BARC The SGMP-LTS process is dust- 
free, avoids generation and hand1 ing of radioactive aerosol, facilitates automation in 
pellet production and minimises the fuel pellet fabrication cost by employing low 
temperature (- 1200' C), short duration (1 hour) sintering in oxidative atmosphere. 
Ammonia internal gelation process using hexamethylene tetramine (HMTA) as 
ammonia generator and silicon oil at 90°C as gelation bath have been used to obtain 
dust-free and free-flowing hydrated gel-mi crospheres, which after controlled 
calcination produce soft and porous UOz microspheres which could be directly 
pelletised. A low temperature pusher type continuous sintering fbrnace has been 
indigenously manufactured and installed in BARC. This furnace has a densification 
zone and reduction zone with a nitrogen curtain in between. The sintering of the UOz 
pellets take place in the densification zone which is maintained at an atmosphere of 
nitrogen and air mixture containing less than 1000 ppm oxygen. The reduction zone 
consists of nitrogen and hydrogen mixture for controlling the stoichiometry of UOz 
pellets afier densification. The UOz pellets fabricated in this indigenous furnace are 
of high density (> 96% T.D.) and contain uniformly distributed, closed, spherical 
pores in the ideal diameter range of 2 to 5 microns. 
Trials are underway for direct and dry conversion of sintered U02 pellets, which 
conform to all chemical specification but are rejected due to surface defects or 
density mismatch, to sinterable U 0 2  powder by controlled oxidation and reduction; 
Hot vacuum (- 300°C) degasing of U02 pellets prior to encapsulation would 
minimise moisture and other hydrogen bearing impurities in pellets, which in turn 
would avoid internal hydriding of he1 elements; 
100% ultrasonic testing of the weld region of resistance welded fbel element is being 
introduced in order to intercept any weld defect and also to phase out the destructive 
metallography technique for evaluating set up and process welds in each shift; 
A new sequence of fuel element and &el bundle fabrication is being developed. The 
present practice is to load sintered UOz pellets in graphite coated he1 cladding tube, 
close both ends of the tubes by resistance welding and then to attach spacers and 
bearing pads on he1 elements by resistance welding. In this method, it is very difficult 
to salvage sintered pellets from rejected he1 element. In addition, the pellets inside 
the fuel element may chip because of several handling steps after encapsulation. In 
order to resolve this problem, demonstration trials are underway to weld (resistance 
welding) bearing and spacer pads on graphite coated he1 cladding tube and use these 
tubes for loading and encapsulation of UO2 pellet stacks. Figure 6 depicts a pictorial 
sequence of the existing and proposed process steps for assembling he1 bundles. 
Initial trials have yielded very encouraging results. 
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