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ABSTRACT 

In this paper, three dimensional heat transfer in a nuclear fuel element consisting of UO, 
pellets and Zircaloy sheath is investigated using the finite element method. Nine node 
isopararnetric elements are used in conjunction with the Fourier series for the modeling of three 
dimensional behavior of heat conduction in a system of axisymmetric solids. The nonlinear 
simultaneous equations of heat conduction are solved using the iterative approach. A computer 
program - FUEL3D is developed and used to obtain numerical simulation results for two heat 
transfer problems in a CANDU fuel element. 

INTRODUCTION 

A three dimensional analysis of thermomechanical behaviors in a CANDU fuel element may 
be necessary if non-uniform heat transfer across the rahal gap between the sheath and pellets, 
axial heat transfer via end caps, non-uniform heat generation in the axial direction and thermal 
anisotropy of UO, are to be considered. Modeling of thermomechanical behavior of a nuclear 
fbel element is a challenging task because of various complicating factors such as nonlinear 
thermomechanical properties of materials, coupling between heat transfer and mechanical 
deformations through solid-solid contacts, complex geometry of pellets, etc. To properly model 
the therrnomechanical behaviors of a nuclear fuel, the finite element method is used in h s  paper. 

Hsu [l] studied axisymmetric heat transfer problems in a two dimensional solid using the finite 
element method. Tayal [2] investigated the two dimensional steady state nonlinear heat transfer 
problems in a nuclear fuel element utilizing the FEAT code developed by him using three node 
triangular finite elements. The transient heat transfer features were added to the FEAT code by 
Tayal et al. [3] in the assessment of fbel temperature under an accidental scenario. 

Because of the axisymmetry of the fuel element geometry, all thermal field variables are 
periodic functions of 0 in the cylindrical coordinates. They can be expanded into Fourier series 
in the circumferential direction. Variations in the other two directions are taken into 
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consideration using two dimensional finite elements. In h s  paper, the nine node isoparametric 
elements were chosen as the two dimensional finite elements for modeling of the three 
dmensional thennomechanical behaviors in the nuclear fuel. Use of this type of elements has 
several advantages - improved accuracy with geometric (angular) element distorhon, quadratic 
polynomial for temperature gradient within each element, and continuous temperature gradient 
along element boundaries. These features are important in determining the degree of accuracy 
and the rate of convergence for calculations of temperatures in the nuclear fuel. 

In this paper, all thermal and mechanical properties are assumed to vary with the spatial 
variables in a manner identical to the field temperature. This practice further enhances the 
accuracy of computed temperatures and the convergence rate. 

Numerical results for temperatures in the he1 element calculated using FUEL3D, a computer 
program developed by the authors, are compared with the analytical solution for a one 
dimensional heat transfer problem. The agreement is excellent for the one dimensional case. 
Test cases for three dimensional heat transfer in a nuclear fbel element are being developed. In 
this paper, only the isotherms and heat flux vector on different surfaces for a three dimensional 
heat transfer problem in the nuclear fbel were presented. 

MATHEMATICAL PROCEDURE 

In this section, the equation of heat conduction in a heterogeneous and anisotropic solid is 
presented in a cylindrical coordmate system. The nonlinear equations of heat conduction for 
nodal temperatures in a nuclear fuel element consisting of two distinct solids - pellets and sheath 
are derived from the Galerkin method. 

Governing Differential Equation 

According to Hsu [I], the steady state heat conduction in a solid is governed by the following 
equation 

where H is the heat generation rate per unit volume; V is the gradient operator; ij is the heat 
flux vector defined in terms of temperature gradient VT and thennal conductivity matrix [k] as 

In dealing with the heat transfer problems in a nuclear fuel element, it is preferable to work 
with the cylindrical coordinates r, 0 and z. In this case, the conductivity matrix and gradient 
operator are written as 



where [k] is the thermal conductivity matrix for a thermally anisotropic solid. The governing 
differential equation of heat conduction in a solid may be written in the following matrix form 

Because the thermal conductivity components of a solid vary with temperature, the above heat 
conduction equation is nonlinear. It is difficult to obtain an analybcal solution to the nonlinear 
heat conduction equation for solids of arbitrary shapes, arbitrary boundary conditions, and 
variable heat generation rate. In this paper, the finite element method is used to obtain an 
approximate numerical solution to Equation (4). 

Finite Element Formulation 

To obtain a solution using the finite element method, the entire domain that a solid of interest 
occupies, V, is divided into N, sub-domains (finite elements) such that V  = V, u V,u.. .uV,,,< . 

Within each sub-domain, Ve , e = 1,2,. . . Ne , an approximate solution T, (8, r ,  z) is sought in 

terms of shape h c t i o n  matrix [ ~ ( 0 ,  r, z)] and nodal temperatures { T )  as follows 

Within each finite element, the approximate solution Te(8,  r ,  Z) satisfies the following weak 
form of governing equation 

5 I ifjme~ - [k] U T , ~ V  + j l [ m e ~ d v  I = 0 

where m e  is an arbitrary but admissible temperature distribution in V, . In a finite element 
application, 0 ,  is assumed to take on the following form 



where {+Ie is an arbitrary and admissible nodal temperatures. 

Upon substitution of Equations (5) and (7) into Equation (6) and utilization of Gauss's 
hvergence theorem, the weak form of equation is written as 

Because of the arbitrariness of {$Ie, we have 

where { T} is the global nodal temperature vector; [K,] and { Q, } are the boundary conductance 
matrix and boundary load vector, which are discussed in the assembly of element equations; the 

element conductance matrix and thermal load vector, [ K ] ,  and f ele, are determined by 

where [L], is a sparse transformation matrix that rearranges the elements in the natural nodal 
temperature vector for the purpose of direct assembly of element conduction equations. 

For an axisymmetric solid, the entire volume may be represented by a f ~ t e  number of annuli. 
A typical annulus or an axisymmetric finite element is shown in Figure 1. Because of the 
axisymmetry of the solid geometry, the field temperature along with all other thermal variables is 
a periodic function of 8. It can therefore be represented by 



where n is the order of harmonics retained in an analysis; the harmonic compositions T, are 
functions of r  and z only. Each harmonic composition T, may be determined using the shape 
function matrix and its nodal values in the r and z  plane. For a nine node isoparametric element, 
this relation may be written as 

= [l cose sin 0 - . cos n0 sin ne]. 

where Nq4 is the shape function matrix for a nine node isoparametric element; 6 ,  q are 

nondimensional coordinates that define the position of a material point within element e; {T, } is 

the nodal temperature vector associated with the k-th harmonic composition in the Fourier series 
representation. The transformation between the coordinates r, z and 5,q is defined by the same 
shape function, or 

G ( r ¶ z )  ' 
q (r¶ 2 )  

T,  (r ,  2) . 

qn ('7 2) 

.TZn+l(r, 21, 

where { r ) ,  and { z ) ,  are the radial and axial coordmates of the nine nodes for element e. 

The element conductance matrix and element thermal load vector for a geometrically 
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axisymmetric solid may be determined using the following shape function matrix 

G ( r ¶ z )  ' 
T (r9 2 )  

T2 ( 7 9  2 )  
: 

qn ('9 2 )  

LT2n+1(ry 21, 



In carrying out the integrals, the numerical integration in the circumferential hrection is 
calculated first using the Fast Fourier Transform. Integrals in the (r, z) plane is then calculated 
numerically using the 4x4 point Gaussian quadrature. In the preparation of the element 
conductance matrix, each thermal conductivity component is assumed to vary according to the 
shape function matrix. Nodal values of the conductivity matrix are calculated fkom nodal 
temperatures using MATPRO correlations recommended by INSC [4]. In the case of 
axisymmetric solid, matrix [L], defines the following transformation 

{{GI. { {q].}' [ '  { { G  Z}  {r, ?; TI} (1 4) 
Y - 

node 1 node 9 

Global Equations of Heat Transfer and Boundary Conditions 

Once the conductance matrices and load vectors for all finite elements are completed, they can 
be assembled to form the following global equation of conduction 

Before solving the simultaneous equations for temperatures, the global conductance and 
thermal load vector must be modified to satisfy the imposed boundary conditions. Two types of 
boundary conditions are of interest in this paper - convective heat transfer boundary conditions at 
the sheath outer surface and combined heat transfer boundary conditions at the interface between 
the pellet outer surface and sheath inner surface. For the convective boundary conditions, the 
global heat conductance matrix and global thermal load vector may be modified by adding the 
following boundary matrix for each surface element consisting of three node 

where h, is the convective heat transfer coefficient; [L,]~ is a sparse matrix that transforms the 



local nodal temperatures to their global positions for a three node surface element; Nel is the 

number of surface elements having convective boundary conditions; T, is the coolant 
temperature; Nk is the shape function matrix for a three node line element. 

For the combined heat transfer boundary conhtions between the pellet and the sheath, an 
effective heat transfer coefficient, hps , is introduced. The heat transfer boundary conditions at 
the pellet outer surface and sheath inner surface may be written as 

Substituting the above equation into the surface integral in Equation (8), one obtains the 
following global boundary matrix, which need be added to the global heat conductance matrix to 
satisfy the combined heat transfer boundary conditions 

where[l,] is a sparse matrix that transforms the local nodal temperatures to their global 

positions for a three node gap element; N is the number of gap elements having combined e2 
boundary conditions; matrix K,', is determined by 

J * 
2n+l submatrices 

It is noted that in carrying out the surface integrals, the two heat transfer coefficients hps and 

h, are allowed to vary in the circumferential and axial duections. 

NUMERICAL RESULTS 

Convergence Tests 

Convergence tests were conducted for two heat transfer problems described in Table 1 where 
geometric parameters are taken from Reference [ S ] .  Case 1 concerns a one dimensional heat 
conduction problem in two axisymmetric solids with convective and combined heat transfer 



boundary conditions. Case 2 involves a three dimensional heat transfer problem. For the two 
cases, impact of mesh size and number of iterations on computed temperature was. investigated. 
It can be seen that a mesh size of 2 mm, whch translates into 32 elements and 170 nodes, and 
two iterations are necessary to achieve an accuracy of +1 O K .  Use of very fine mesh increases 
the computation time significantly while providing very little improvement in accuracy. These 
findings are illustrated in Figure 2. Numerical simulations performed using a SUN station 
indicate that an appropriate finite element mesh for the temperature obtained with acceptable 
accuracy and acceptable computing time has an average element size of 1 to 2 rnm. 

One Dimensional Heat Transfer 

In the case of one dimensional heat transfer, the heat conduction equation in the pellet and 
sheath may be reduced to 

The convective and combined heat transfer boundary conditions may be written as 

Exact solutions for temperatures in the pellet and the sheath after incorporating the above 
boundary conditions may be obtained for constant thermal conductivities kp and ks , and 
uniform heat generation rate. They are written as 

H 2  H a 1  a a b  Tp(r)=-(a - r 2 ) + ~ ,  +-(-+-+-ln-) ( 0 i r ~ a )  
4k, 2 h ,  bh, ks a  

Results for a one dimensional heat transfer problem described in Table 1 were calculated using 
FUEL3D and the analyhcal solutions. Figure 3 shows that the results fiom FUEL3D are 
identical to those analytical solutions for temperature in the pellet midplane. 

Three Dimensional Heat Transfer 

Analysis of a three dimensional heat transfer problem described in Table 1 was conducted 
using the finite element mesh shown in Figure 4. The driving factors for the three dimensional 
heat transfer are circumferential variation of effective heat transfer coefficient across the radal 



gap between the pellet and the sheath, chamfer and dish. The heat flux vector field and isotherms 
in plane 8 = 0" are shown in Figures 5 and 6 .  These two figures clearly show the axial heat 
transfer because of the chamfer and dish. The circumferential variation in h,, causes heat 

transfer in the circumferential direction. As a result, the isotherms in the pellet midplane ( r  - 0 ) 
are different fkom perfect circles as shown in Figure 7. 

CONCLUSIONS 

Thls paper presents a three dimension finite element analysis of heat conduction in a nuclear 
he1 element. Numerical results obtained for a one dimensional heat transfer problem are in 
agreement with the analytical solution. Convergence rate for the nonlinear temperature 
calculations is excellent. Only three iterations are required to achieve an accuracy of +1 OK. 

The same type of element is now being implemented in FUEL3D for modeling of thermally 
induced elastic-creep deformations of a nuclear fuel element. 
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TABLE 1 DESCRIPTIONS OF TWO HEAT TRANSFER PROBLEMS 
- - - 

TABLE 2 CONVERGENCE TEST - MAXIMUM TEMPERATURE VS. MESH S E E  

Parameters 
Pellet outer radius (mm) 
Sheath inner radius (mm) 
Sheath thickness (mm) 
Pellet full length (mm) 
Chamfer height (mm) 
Chamfer width (rnrn) 
Dish depth (rnm) 
Dish radius (m) 
UO, thermal conductivity WlmK 
Zircaloy thermal conductivity W/mK 
Heat transfer coefficient between pellet and 
sheath kW/m2K 
Heat transfer coefficient between sheath and 
coolant kW/m2K 
Coolant temperature K 
Uniform eat generation rate W / m 3  
Number of harmonics n 
Boundary conditions on other surfaces 

TABLE 3 CONVERGENCE TEST - MAXIMUM TEMPERATURE VS. ITERATIONS 

Case 1 
6.00 
6.00 
0.40 

19.00 
0.00 
0.00 
0.00 
0.00 
4.00 

16.00 
1.50 

50.00 

578.00 
442.10 

1 

4. = o  

Cases Studied 

Case 1 
Case 2 

Case 2 
. 6.00 

6.08 
0.40 

19.00 
0.50 
1-00 
0.20 
3.50 

MSC Database 
MSC Database 

1.50(1 +O. 1 cose) 

50.00 

578.00 
442.10 

1 

4. = o  

FIGURE 1 A TYPICAL NINE NODE FINITE ELEMENT IN AN AXISYMMETRIC SOLID 

Average Mesh Size 

Cases Studied 

Case 1 
Case 2 

3.0 mm 
2519.5 K 
2281.5 K 

Max iterations to acheve f 1 OK accuracy (mesh size of 2.0 mm) 

2.0 mm 
2519.5 K 
226 1.6 K 

1 
2519.5 K 
2249.4 K 

1 .O mm 
2519.5 K 
2261 .O 

2 
251 9.5 K 
2261.6 K 

0.75 rnrn 
2519.5 K 
226 1.2 

3 

2261.6 K 
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FIGURE 2 (a) ACCURACY VS. MESH SIZE; (b) COMPUTING TIME VS. MESH SIZE 
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FIGURE 3 TEMPERATURE PROFILE IN FUEL ELEMENT (CASE 1) 

FIGURE 4 A FINITE ELEMENT MESH USED IN CASE 2 



FIGURE 5 HEAT FLUX PROFILE IN PELLET AND SHEATH (CASE 2) 

FIGURE 6 ISOTHERMS IN PLANE 0 = 0' (CASE 2) 

FIGURE 7 ISOTHERMS IN THE PELLET MIDPLANE (CASE 2) 




