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Abstract 

A stability analysis of a viscous incompressible liquid metal flow in an annular lin­
ear induction electromagnetic pump for sodium coolant circulation of LMR ( Liquid 
Metal Reacters ) is carried out when transverse magnetic fields permeate an electri­
cally conducting sodium fluid across the narrow annular gap. Due to a negligible skin 
effect , the radial magnetic field is assumed to be constant over the narrow channel 
gap, and the steady state solution of an axial velocity is obtained as a function of 
radius r . Small perturbations for MHD fields in the form of f (r )ej (wt-k-r ) , where w is 
the angular frequency and k is t he wave vector of perturbation, are considered and 
perturbed MHD equations are linearized. The solutions of t he perturbed equations 
are sought in t he form of linear combination of independent orthogonal functions 
{ 7/Jn( ()~=0 } in t he non-dimensional radial interval (0,1) and each orthogonal function 
is chosen to satisfy boundary conditions of adhesion at the solid walls of the channel. 
Under assumption that solutions of the equat ions are not oscillated rapidly accord­
ing to radial coordinate r , finit e numbers of orthogonal polynomials are considered . 
As a result , simultaneous equations with coefficients of steady-state solutions are 
arranged and dispersion relations between angular frequency and wave number of 
perturbed st at e are sought. The imaginary part of the angular frequency (wi) is 
taken into consideration from the condition of the existence of nontrivial solut ion of 
the system , which yields t he relation between critical Reynolds number ( Recr ) and 
Hartmann number (Ha) - In the present study, crit ical Reynolds number and Wave 
numbers are plotted on the Hartmann number for long wave perturbation, thus, it is 
shown that a magnetic field has a significant stabilizing effect on liquid metal flow. 

1 Introduction 

Annular linear induction electromagnetic pumps[ALIP] have been widely inves­
tigated for the transportat ion of sodium-coolant in the [LMR][1 - 61. The electrically 
conducting liquid metal, in an annular channel of ALIP, suffers from an axial elec­
tromagnetic force(Lorentz force) generated by induced azimuthal electric current 
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and a radial magnetic field. Electromagnetic forces in the fluid give a dominant con­
tribution to the force balance due to the strong applied magnetic field. For most 
electromagnetic pump systems with high electrical conductivity under strong mag­
netic fields, viscous forces are very weak compared with electromagnetic forces as 
anticipated by high Hartmann number(Ha)- In fact, viscous effects are confined to 
thin boundary layers near the annular channel walls in laminar flows with adhesive 
boundary conditions for the velocity. In the electromagnetic-force-dominant MHD 
laminar flow system with a sufficiently high Ha, the radial profile of the velocity dis­
tribution turns flat so that velocity gradients become zero in the entire flow region 
with the exception of the narrow wall layers[7l_ It is indicated that the flow with such 
a velocity distribution would be more stable than the flow with a parabolic velocity 
distribution[7l. In the present study, for a simple model of axially-infinite electromag­
netic pump with equivalent current sheet, the steady-state solution of unidirectional 
velocity distribution on the laminar flow at very narrow annular channel gap is found 
under a transverse magnetic field produced by three-phase magnet coils . Using the 
method of small perturbation for the fluid velocity, magnetic field and pressure, lin­
ear stability analysis is carried out on the flow of an incompressible liquid metal flow . 
The criterion for stable operation is sought from the imaginary part of perturbed 
angular frequency and the critical Reynolds number(Recr) is thus found in terms of 
Hartmann number(Ha) for the pump with flowrate of 40 1/min. 

2 Steady-state solution 

The schematic of an analytical electromagnetic pump model with equivalent sheet 
current is depicted in Fig. 1 as an idealization of the MHD induction flow system 
with a practical three-phase coil arrangement. The annular channel consists of a 
narrow gap between two infinite coaxial cylinders with different radius. The liquid 
metal flow of high electrical conductivity is assumed to be laminar, incompressible 
and axisymmetric with axial velocity components depending on radial positions. The 
pumping fluid is characterized by its density p, viscosity µ , electrical conductivity 
a-, and vacuum magnetic permeability µ0 . Magnet cores outside the annular channel 
are the idealized silicon-iron laminations with zero conductivity and infinite perme­
ability. Applied electrical current of magnet coils is given by sinusoidal equivalent 
sheet current that flows azimuthally on the outer wall(rb), and it generates a radial 
magnetic field with an axial magnetic field passing through the inner core( r a). This 
current is represented by the peak line current density Im given by 3v'2kw N I where 

PT 
kw, N, I , p, and Tare the winding coefficient , turns of coil , input current , pole pairs, 
and pole pitch, respectively. With the help of angular frequency w' and wave number 
k' of travelling current , the sheet current l a is thus described as (s) 

(1) 

Magnetic and electric fields and electrical current induced by sinusoidal applied 
sheet current with axisymmetry are generated also in the form of sinusoidal and 
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axisymmetric fields having different phases of each other. Mathematical descriptions 
for these fields are[9l 

(2) 

where F = B , E, and J. Now, the conducting incompressible fluid under time-varing 
magnetic field is governed by the following set of dimensionless MHD equations: 

fJV 1 2 H/ - + (V · V)V = -VP+ -V V + -J x B at Re Re 

V X B = RmJ 

fJB 
V XE=--

fJt 

V-B = 0 

J = (E + V x B) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

where V , P, J, B , and E denote dimensionless quantities of velocity, pressure, 
current density, magnetic and electric fields, normalized by their reference values 
with Uo, pUJ, a-UoBo , Bo, and UoBo, respectively. Here, Bo= Jq~:k' and Uo = ~'.(I­
s) when the flow speed is characterized by the slip s with respect to the synchronous 
speed ~; . Then, the equations are characterized by Reynolds number , ( Re = pR; Va) , 

~ Hartmann number (Ha = y------;--- ), magnetic Reynolds number(Rm = µ 0 a- Ro Vo). In 

this system, it is assumed that the induced magnetic field is negligible due to small 
Rm , and the radial magnetic field is constant over narrow channel gap by negligible 
skin effect , and the pressure gradient is constant. Using Eqs. (2) through (8), the 
axial component of the force balance for the time averaged quantities yields[9l 

fJP 1 8 ( au) (32 H; -- + --- r- + --(1 - u) = 0 
oz Re rfJr or 2Re 

(9) 

where 

(10) 

Here, s = J;:(1-u )dr means the average slip over annular channel. General solutions 
of Eq. (9) are simply linear combinations of modified Bessel functions of the 1st and 
2nd kinds. Applying boundary conditions at the walls for the velocity given by 

(11) 
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to the general solution , the exact solution for the axial velocity is found as ln ] 

where 

Re 8 P Re 17 ( 1 - s) 2 

1 = ----+ 1 = ------+ 1 
a 2 oz a 2 4 

a = f3Ha , 17 : frict ion coefficient 

3 Stability of liquid metal flow in the narrow channel 

(13) 

Sodium fluid of ALIP is developed in the axial direction under a traveling moving 
magnetic field with an induced current flow. Then, by some perturbations, the sys­
tem may experience turbulence[7] and, eventually, flow separation or local cavitation. 
In addit ion , abrupt increase of induced current can lead to damage of t he system by 
growing perturbation. As generally known, a magnetic field improves hydrodynamic 
stability of t he flow or suppresses a turbulence already present[8]. ALIP mainly 
suffers from axial developing force by the Lorentz's product of azimuthal induced 
current and radial magnetic field, while experiences radial force by axial magnetic 
field which exists in the liquid metal. Generally, perturbation can be caused in the 
every direction, but in the present study, the stability effect of the magnetic field 
on the liquid metal flow is estimated through the analysis of the axisymmetric two 
dimensional linear stability taking into account the perturbation on the developing 
direction . To analyze a magnetic field effect on an electrically conducting flow, criti­
cal Reynolds number Recr is plotted according to Hartmann number Ha solving 4th 
Orr-Sommerfeld equation[ll- 15] in case of small magnetic Reynold number, Rm . 
Firstly, because arb > ar > ara ~ 1 in the steady state solution given by Eq. (12), 
mathematical convenience with form of hyperbolic type[l6] is obtained by the help 
of approximation of Bessel function. Each dimensionless perturbed physical quan­
t it ies V , B and P can be written in the Fourier sum of an initial value and the 
superposed perturbations of all normal modes as follows [l 7]: 

V (r, t) =Vo+ L v ( r )ej (wt-k z - m0) 

k ,m 

B (r, t ) = Bo+ L b ( r ) e j(wt - kz - m0) (14) 
k ,m 

P (r , t ) =Po+ L P(r)ej(wt-kz -m0) 

k,m 
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where V 0, B 0 and P0 are steady state values , w perturbed angular frequency, k 
perturbed axial directional wave number and m perturbed azimuthal wave number. 
Substituting Eq. (14) into Eqs. ( 4) - (8) yields following linear perturbation equations 
after neglecting quadratic terms: 

where 

ov(r) at+ (Vo· v')v + (v · v')Vo 

II 1 2 H/ ( ) = v' +Rev' V + ReRm Bo · v'b + b · v'Bo 

ob(r) 1 2 -- + (v · v')Bo - (Bo· v')v = -v' b ot Rm 

Vo=u(r)z 
H2 

II= p + ReRm (Bo· b + b · Bo ) 

For negligible Rm << 1, magnetic field is expanded in series of Rm[ll] 

(15) 

(16) 

Leaving zero-order terms on Rm in Eqs.(15) and (16) and operating on Eq.(15) by 
r · v' x v' X with further assumption of Br ?> Bz for sufficiently large Ha in narrow 
gap and using Eq. (16), pressure and magnetic field terms can be suitably removed 
and then, we have representation on velocity as follows: 

(17) 

Introducing stream function for the perturbed velocity given by 

\]i = L 1/J (r) ej(wt-kz- m0) (18) 
k,m 

we have perturbed velocity from the curl operation on the stream function as follows: 

o\JJ 1 o 
V = (-- 0 --r\JJ) 

oz ' 'r or 
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Then, for axisymmetric (m = 0) perturbed MHD flow, substituting Eqs. (18) and 
(19) into Eq. (17) gives Orr-Sommerfeld equation on the r as follows: 

where 

- 2 
A = -, 

r 

(20) 

- 2 2 Ro . 2 1 
B = 2k Ro - Re(Vok Ro -w17 )J - Ha - 2 (21) 

v0 r 

- 1 2 2 ( 3 3 . 2 Ro .) 
C = 3 + 2k Ro - R e Vo k Ro J - k Row- + VokroJ 

r Va 
- k4 4 ( k Ro ) k2 2 . " . k D = Ro + Vo Ro - w Vo Ro J + 11a R eJ Ro 

Eq.(20) is solved with no-slip boundary conditions with the velocity at the walls 
given to be 

(22) 

'ljJ ( r) can be represented from Forurier expansion as follows : 

00 00 

'l/J(r) = ao + L an sin mrr + L bn cos mrr. (23) 
n=O n=O 

Velocity distribution is not thought to oscillate rapidly over the flow channel, due 
to constant developing force by almost uniform magnetic field. Therefore, in the 
Eq. (23), Fourier expansion can be approximated in terms of finite numbers of 
its polynomials under the assumption of no rapid oscillation of higher harmonics 
according to radial coordinate[l3]. That is, Eq. (23) is represented by first three 
terms satisfying boundary conditions Eq. (22) as follows : 

'l/J(r) ~ b0(l - cos21r() + b1 (cos1r(- cos31r() 
1 +a1 ( sin 1r( - 3 sin 31r() 

= bo</>o + b1 </>1 + a1 </>2, 

(24) 

where ( = r - ra . After applying operator Lim defined by Lim = ( <Pt, L</>m), to Eq. 
1 _ a4 - a3 - a2 - a -

(24) where (¢1 , <Pm) = Io </>1(()</>m(()d( and L = Br4 + Aa,,3 + Ba,.2 + car + D, we 
have 

(25) 
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Arranging Eq. (25) multiplied by r/>0 , r/>1 andrp2 yields linear simultaneous equations 
on the bo, b1 and a1 as follows: 

boLoo + b1Lo1 + a1Lo2 = 0 
boL10 + b1L11 + a1L12 = 0 
boL20 + b1L21 + a1L22 = 0 

(26) 

For the non trivial solution of Eq. (26), the determinant of a resultant coefficients 
matrix of the simultaneous equations should vanish. 

Loo L01 L02 

L10 Ln L12 = 0 

L20 L21 L22 

Dispersion relation is found out from the determinant equation using the coefficients 
replaced by values at mean radius by narrow gap approximation. When the imagi­
nary part of angular frequency sets to be zero in the dispersion relation obtained, a 
critical Reynolds number is found as function of Hartmann number along with U0 , 

Ro and k as follows: 

(27) 

In the Fig. 2, critical Reynolds numbers are shown in log scales for a suitably designed 
pump with flowrate of 40 1/ min. As seen in Fig. 2, critical Reynolds number R ecr 

increases proportional to the square of Hartmann number Ha for the fixed wave 
number k. And it is shown that the flow becomes more stable due to a larger critical 
Reynolds number in case of perturbed wave with longer wave length( k « 1). Fig. 3 
shows the magnetic field effect on the stability for the long wave perturbation ( k « 
1) , and then it is known that as a magnetic field increases, critical Reynolds number 
also increases and the stable flow is kept even in the higher speed. When Reynolds 
number of 13 ,666 on the pump with a flowrate of 40 1/min is compared with critical 
Reynolds number of order of more than 106 for the long wave perturbation, practical 
ALIP is predicted to operate stably by axisymmetric linear stability analysis from 
the very large difference of the two Reynolds numbers. 

4 Conclusion 

A dispersion relation has been obtained from the condition of a non-trivial solu­
tion for the ALIP by strong magnetic field like Eq.(27). And for putting Im(w) zero, 
critical Reynolds numbers have been plotted on the Hartmann numbers perturbed 
wave numbers for a suitably designed ALIP with a flowrate of 40 1/min. As seen in 
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Fig. 2, critical Reynolds number(Recr) increases according to increasing Hartmann 
number(Ha) for a certain wave number(k). Thus, it is predicted that the effect of 
strong transverse magnetic field across annular channel gap suppresses t he onset of 
instability. 
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Fig. 2. Critical Reynolds number on the different 
wave numbers according to Hartmann 
number compared with Reynolds number 
obtained at the nominal operation of the 
pump with flowrate of 40 1/min 
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