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ABSTRACT 

CATHENA presently uses the Harwell MA28 routines to solve the sparse matrices generated by the 
thermalhydraulics numerical method The objective of this paper is to present an overview of commonly used 
sparse matrix solution techniques, and to examine the potential benefits of using other solvers in CATHENA. 
Previous out-board tests have shown that the SMPAK, YI 2M, and IMSL direct solvers and the PCGPAK3 
iterative solver may be competitive with the MA28 solver. In the present investigation the performance of these 
solvers was tested in-situ in CATHENA using a wide variety of different simulations. The results indicate the 
SMP AK and YI 2M direct solvers show the best performance and can increase the overall simulation speed by 
up to a factor of 8 for the largest CATHENA simulations tested. 

1. INTRODUCTION 

CATHENA (Canadian Algorithm for THErmalhydraulic Network Analysis) is a computer program designed 
for the analysis of two-phase flow and heat transfer in piping networks. The CATHENA thermalhydraulic code 
was developed by AECL, Whiteshell Laboratories, primarily for the analysis of postulated accident conditions 
in CANDU® reactors. 

The thermalhydraulic model employed in CATHENA uses a one-dimensional, non-equilibrium two-fluid 
model consisting of six partial differential equations for mass, momentum and energy conservation; three for 
each phase. A first-order finite-difference representation is used to solve the differential equations, utilizing a 
semi-implicit one-step method in which the time step is not limited to the material Courant number [1]. At 
each time step the linearization of the differential conservation equations results in a sparse matrix which is 
written and solved. Currently the solution is provided using the Harwell MA28 sparse matrix solver which was 
developed in the early 1970s. 

When relatively small network simulations are performed, for example when the order of the matrix to be 
solved n is less than 4000, less than 25% of the total simulation time is usually spent in the sparse solver. In 
general, the computational effort needed to assemble the CATHENA sparse matrix scales linearly with the 
order of the matrix as n. In contrast, the computational effort needed to solve a sparse matrix scales less than 
n2 but is still far from linear with n, depending on the efficiency of the solver, the sparsity and the structure of 
the matrix [2]. As a result, the fraction of the total time spent solving the generated sparse matrices increases 
as the size of the simulation increases. Earlier studies have shown that as the order of the CATHENA matrix 
increases to greater than 17,000 more than 90% of the simulation can be spent in solving the sparse matrices. 
In these cases, the efficiency of the sparse solver can become a dominant factor in the computational efficiency 
ofCATHENA [3]. 

CANDu® is a registered trademark of Atomic Energy of Canada Limited (AECL). 
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Although the CATHENA sparse matrices are non-symmetric, non-positive definite, and relatively stiff, the 
MA28 routines have proven themselves robust and reliable for more than 10 years. In the interim a number of 
potentially more efficient solvers have become available. A preliminary study where CATHENA generated 
sparse matrices were solved on a stand-alone basis, using 6 direct and 2 iterative sparse matrix solvers, showed 
that it may be possible to achieve significant savings in solution time through the use of alternative matrix 
solvers [3]. 

After presenting a review of the available sparse matrix solution techniques, the present study examines five 
(5) of the most promising matrix solvers (4 direct and 1 iterative) investigated in the preliminary study. These 
solvers were directly implemented in a test version ofCATHENA MOD-3.5c/Rev O and were used to solve a 
wide range ofthermalhydraulic simulations, from very small and simple to extremely large and complex. The 
solvers under examination were tested for both accuracy and speed. The results of this investigation indicate 
that two of the direct solver solvers are much faster than the MA28 routines and significantly enhance the 
overall performance of CATHENA for large simulations. 

2. REVIEW OF SPARSE MATRIX SOLUTION TECHNIQUES 

The solution of systems of linear equations is one of the most important areas of numerical mathematics. A 
large number of different descriptions of physical problems can be reduced to a linear system of the form: 

Ax =b (1) 

where x represents a vector of variables to be solved for, A represents the matrix of coefficients of the linear 
system, and b represents a vector of constants. 

The matrix A is often sparsely populated (less than 10% of the positions are occupied, often significantly less) 
and the problem can involve the simultaneous solution of a system involving millions of equations. Problems 
of such magnitude can seriously challenge the computational capabilities of any given machine. They can only 
be solved using numerical algorithms that take sparseness and structure into account, and use special storage 
and programming techniques. 

Matrices to be solved may have real or complex elements, may be symmetric or unsymmetric (for real 
matrices) or Hermitian or non-Hermitian (for complex matrices). They may be positive definite, banded, have 
a block structure, or be diagonally dominant. Depending on which of these characteristics a given matrix 
displays, special algorithms have been developed to solve the system of equations to minimize storage and 
computation time. 

2.1 Solution Methods 

Solution methods for sparse matrices can be classified into one of three general categories: 

1. Direct Methods that yield the required solution with a fixed number of arithmetic operations. 

2. Iterative Methods that begin with a starting vector x 0, and compute a sequence of iterands xm for 
m=l,2,3, ... 

where xm+l is only dependent on xm, and starting value x 0 is not part of the method. 
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3. Parallel Solvers that solve parts of the matrix simultaneously. These methods also often take advantage 
of available vector processing, and typically avail themselves of methods developed for direct and 
iterative solvers. 

2.2 Direct Methods 

At the heart of every direct method lies the Gaussian elimination process and the related triangular 
decomposition. To solve equation 1, a decomposition of matrix A into lower L and upper U triangular 
matrices is performed: 

A=LU (2) 

and a forward and back-substitution is performed to find the solution vector x: 

LUx = b <::> Ly= b Ux = y (3) 

Variants of the basic direct method differ primarily in the way the matrix A is stored, the details of the 
elimination process, the precautions used to minimize rounding errors, and the methods of refining solutions. 

Special direct methods exist for symmetric or positive definite matrices that need only about half the number of 
storage cells. A special direct method known as the frontal technique also exists. Although originally 
developed for finite element analysis, it is not restricted to that application [4, 5]. 

The numerical accuracy and stability of direct methods is normally assured by moving the largest elements 
into the diagonal through row and column exchanges, an operation called pivoting. Partial pivoting involves 
exchanging only rows and full pivoting involves exchanging both rows and columns. The usefulness of 
pivoting is not always guaranteed due to the time and effort it takes to perform the pivoting operations [6]. 

In the process of solving the matrix A, new non-zero elements, known as fill-ins, will be created. Direct 
solvers attempt to minimize the number of fill-ins wherever possible. Some of these new elements will be 
physically significant, whereas others could theoretically be dismissed as numerical roundoff. Some routines 
make provisions for dropping these insignificant values through a drop-tolerance parameter. Depending on the 
drop-tolerance used, it may be necessary to improve the accuracy of the final answer in a process known as 
residual refinement [2, 7]. 

Direct solution methods have received a significant amount of attention in the literature. Recent discussion on 
the use of direct methods in fluid mechanics problems can be found in articles by Onyejekwe et al [8] on fluid 
flow in pipe networks, and Habashi et al [9] on the use of direct methods well suited for use on 
supercomputers. The use of direct solvers in finite element problems is discussed by Leimbach and Zeller [ 1 O] 
(for the nuclear industry) and Peters [11]. 

If matrix A is not well conditioned, direct methods can sometimes succeed where iterative methods can fail. 
Young et al [12] discuss a case in which direct solvers were chosen over iterative solvers for intractable 
problems in the aerospace industry. 

Due to their relative robustness, good track record, and ability to solve a matrix in a finite number of steps, 
direct solvers such as MA28 and Y12M [13, 14] have been in use for some time now, and are looked upon 
almost as an industry standard. As such, these routines are often used as baselines for comparisons between 
other routines. For example, Duff and Nowak compare the performance ofNSPFAC and MA28 in the 
LARKIN program [15]. Good general discussions of direct methods for sparse matrices can be found in the 
books by Pissanetzky [4], Duff et al [2], and Zlatev [7]. The book by Duff represents a more general 



2oth Annual Conference of the Canadian Nuclear Society 
Montreal, Quebec, Canada I May 30 - June 2, 1999 

introduction to direct methods. The book by Zlatev is a more extensive publication discussing a wide range of 
subject areas. 

2.3 Iterative Methods 

Some of the more commonly known iterative method include 

• Jacobi, Gauss-Seidel, and Successive Overrelaxed (SOR) methods. These are sometimes referred to as 
classical methods. 

• Conjugate-Gradient Methods. Although they are very popular, these algorithms unfortunately require 
positive definiteness in matrix A. 

• Multi-Grid Methods. Unlike the previous routines which have at best a linear convergence, multi-grid 
methods have a convergence which is independent of step-size. 

• Domain Decomposition. 

In general, the Xm+l vector in iterative methods is only dependent on the x vector from the preceeding step Xm, 
as well as matrix A and constant vector b: 

Xm+l = <l>(im) where <I> = f (A, b) (4) 

Semi-iterative methods also exist. In this case, Xm+l is calculated using more than just im: 

(5) 

An example of such a method is the Alternating-Direction Implicit or ADI method. 

A preconditioner is often used to help speed up the convergence of the iterations. The term derives its name 
from the idea that an improvement in the condition number of matrix A helps the iteration proceed. An 
undesirable side effect of this process lies in the potentially large amount of time that can be spent in the 
preconditioning stage [16]. Nonetheless, iterative methods can be advantageous for sparse matrices since far 
fewer calculations are performed per iteration than are made during the solution when using direct methods. 
Additional advantages exist if a good approximation to x is already available to accelerate the convergence. 
Unfortunately, if a matrix is not positive definite, convergence is not guaranteed. 

Comprehensive summaries of iterative techniques can be found in the books by Ilin [ 17] and Hackbusch [ 18]. 
The book by Hackbusch in particular stands out as a good and very up-to-date overview of iterative methods. 
A comparative summary of various iterative techniques can be found in the article by Dongarra and van der 
Vorst [19]. 

2.4 Parallel Solvers 

Two general approaches are used to solve matrices in parallel: 

1. Consider the inherent ability of the detailed coding to be performed in parallel, or by using vector 
processors. For example, row and column swapping might be done in parallel, or a section of the code 
might be rewritten to vectorize basic matrix operations. 
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2. Divide the matrix into sub-groups that can be separately calculated. Some commonly used techniques 
include partitioning, matrix modification, and tearing. These methods tend to perturb the matrix, but 
matrix perturbation techniques may also be used to better condition the matrix. 

Parallel methods represent the forefront of development work in matrix solution. As new machines and 
hardware become available, new parallel methods are developed. Further details can be found in 
references [20-24]. The present investigation will only consider the use of direct or iterative techniques. 

3. SOLVER TESTING 

3 .1 Solver Implementation and Choice of Test Cases 

In an earlier investigation [3], a broad pallet of sparse matrix solvers was tested on a small number of 
CATHENA matrices. These tests were performed on an outboard basis and were benchmarked against the 
MA28 solver. The results indicated the direct solvers in the Y12M routines by Zlatev et al [13], the 
commercial IMSL routines, and the specialized SMPAK routines developed by Scientific Computing 
Associates (SCA) deserved further investigation. Of the iterative solvers tested, only the set of results from the 
PCGPAK3 routines offered by SCA warranted further investigation. 

For the present investigation, these routines were integrated into a test version of CATHENA and used to run a 
wide range of test cases. As summarized in Table 1, the test cases ranged from the smallest cases such as 
TESTI (16 equations and 34 non-zero terms) to some of the largest and most complex simulations being 
performed with CATHENA. The standard CATHENA acceptance test suite was used to ensure the solvers had 
been correctly integrated into the test version of CATHENA and were producing results consistent with MA28 
results. 

Wherever possible, the sparse solvers were implemented using the standard recommended preset values. The 
IMSL sparse solver was implemented in such a way that it could be utilized in row pivot, column pivot as well 
as row plus column pivot mode. 

The iterative solver, PCGPAK3, which in fact represents a suite of iterative solution methods, was 
implemented using an incomplete LU preconditioner and a Generalized Minimal RESidual (GMRES) iteration 
method. This proved to be the most efficient and stable combination. Block solution was not used. The initial 
guess on the first step was given by the intial conditions provided by CATHENA. Initial guesses for subsequent 
steps were provided by the solution from the previous time step, thus fully utilizing this accelerative feature of 
iterative solvers. 

Care was taken to ensure the test cases chosen in Table 1 represent a good cross section of the types of sparse 
matrices generated by CATHENA. As shown in Figures 1-4, the test cases chosen show a wide range of 
structure. The structure of the CATHENA-generated sparse matrices is largely dependent on the manner in 
which the network connections are assembled in the CATHENA input file by the user and thus tend to reflect 
both the structure of the physical facility and the approach used to idealize it. For example, the TEST20 matrix 
shown in Figure 4 represents an idealization of the RD-14M facility [25] . The square symmetric off-diagonal 
non-zero entries (as represented by the solid points in the figure) at the top left and the middle reflect the 
presence of the two sets of parallel heated sections in the facility. The clusters of off-diagonal non-zero entries 
at the bottom right represent the steam generators and the ECI system. 
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3 .2 Test Results 

The results of the tests are shown in Tables 2 and 3. Table 2 summarizes the average matrix solution time (in 
seconds) per CATHENA timestep, and Table 3 shows the performance of the solvers relative to the 
performance of MA28. As shown here, the SMPAK direct solver has the best overall performance relative to 
MA28 for both small and large cases. With the exception of the TES TI 7 case, the SMPAK routine is 
significantly faster than MA28. In one case (TEST25, one of the largest test cases) the SMPAK routines take 
only 2.3% of the time it takes MA28 to solve the CATHENA sparse matrices. 

The next best performance was provided by the Y12M solver. Although it does not do as well with the small 
cases, it meets, and in one case (TEST24) even slightly exceeds the performance of SMPAK for the larger 
cases. 

The IMSL sparse solver routine was tested in column, row, and row plus column pivot mode. For small cases, 
the IMSL routine performance was close to that of MA28, but in many cases it was slower. In general the 
choice of pivoting does not have a large effect on the performance of the routine when solving CATHENA 
matrices. Like the Y12M routine, the IMSL routine provided the best performance relative to the MA28 
routine when solving large matrices. However, the overall performance was nowhere near that of the SMPAK 
and Y12M routines for CATHENA matrices. 

On average, the iterative PCGPAK3 routine was about as fast as the MA28 solver. In some cases it was 
significantly slower (by a factor ofup to 2.5). The PCGPAK3 routines were quite competitive with the MA28 
solver for the larger matrices, but the performance for these cases was 2--4 times slower than the SMPAK or 
Y12M routines. 

It should be noted that the PCGPAK3 routines make use of the Basic Linear Algebra Subroutines (BLAS). 
These routines are available as standard high-level language coded routines, as well as machine coded routines 
which are optimized for a particular machine hardware. Previous studies indicate savings of more than 20% in 
the run times can be achieved through the use of specially optimized BLAS routines [3]. This does not provide 
a large enough saving to make the PCGPAK3 routines competitive with direct solver routines like Y12M or 
SMPAK. 

4. SUMMARY AND CONCLUSIONS 

The MA28 solver is presently used as the standard sparse matrix solver in CATHENA. This solver is still 
competitive with newer routines when solving small to medium sized CATHENA matrices ( order < 4000). 

Recently, users have begun to create larger simulations. These typically model an entire CANDU reactor, 
including subsystems, with an increasing degree of detail. In these large simulations, a significant performance 
enhancement could be obtained through a simple replacement of the sparse matrix solver. The overall run 
times of the cases could be significantly reduced. For example, the TEST24 case spends more than 70% of its 
time in the MA28 sparse solver. A switch to the SMPAK solver would increase the overall performance of the 
code by a factor of more than 2.5. The TEST25 case, which spends 90% of its time in the MA28 solver, would 
run more than 8 times faster if the SMPAK solver was used instead. 

The present study indicates the two routines which provide the best performance in comparison to the MA28 
routine for solving CATHENA generated sparse matrices are the direct sparse matrix solvers: Y12M and 
SMPAK. Implementation of these routines is recommended as alternative sparse matrix solvers for future 
CATHENA versions. 
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I Test 

TESTl 
TEST2 
TEST3 
TEST4 
TESTS 
TEST6 
TEST7 
TEST8 
TEST9 
TESTl0 
TESTll 
TEST12 
TEST13 
TEST14 
TESTIS 
TEST16 
TEST17 
TEST18 
TEST19 
TEST20 
TEST21 
TEST22 
TEST23 
TEST24 
TEST25 

TABLE 1: Summary of test matrices. 

II Order I #Non-Zero I % Sparsity 

16 34 13.28125 
39 205 13.47798 
94 586 6.63196 

130 447 2.64497 
142 805 3.99226 
142 918 4.55267 
194 680 1.80678 
202 1036 2.53897 
336 1191 1.05495 
368 1994 1.47241 
527 1842 0.66324 
754 2730 0.48020 
842 3602 0.50807 
884 3598 0.46042 

1368 5116 0.27337 
1654 6322 0.23109 
2292 10530 0.20045 
2390 9492 0.16617 
3008 18714 0.20683 
3168 15926 0.15869 
3846 13886 0.09388 
8009 32453 0.05059 

13391 45158 0.02518 
19470 88935 0.02346 
17733 91929 0.02923 
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FIGURE 1: Structure of the TEST21 matrix. 

FIGURE 2: Structure of the TEST22 matrix. 
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FIGURE 3: Structure of the TEST16 matrix. 

FIGURE 4: Structure of the TEST20 matrix. 
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TABLE 2: Average matrix solution times per CATHENA timestep in seconds. 

I Test II MA28 I SMPAK I Y12M I IMSLC I IMSLR I IMSLR+C I PCGPAK3 I 
TESTl 0.00164 
TEST2 0.00625 
TEST3 0.02034 
TEST4 0.01048 
TESTS 0.04117 
TEST6 0.04488 
TEST7 0.01578 
TESTS 0.02802 
TEST9 0.10086 
TESTl0 0.12494 
TESTll 0.05196 
TEST12 0.07402 
TEST13 0.19925 
TEST14 0.33869 
TESTIS 0.43649 
TEST16 0.30557 
TEST17 2.06144 
TEST18 0.60114 
TEST19 6.08560 
TEST20 1.91507 
TEST21 1.93109 
TEST22 3.67701 
TEST23 8.25507 
TEST24 67.38019 
TEST25 159.01497 

C = columnwise pivot 
R = rowwise pivot 
R+C = row and columnwise pivot 

0.00024 0.00136 
0.00109 0.00603 
0.00328 0.01445 
0.00247 0.01034 
0.00636 0.02586 
0.00717 0.03047 
0.00418 0.01549 
0.00218 0.02273 
0.02786 0.05912 
0.01223 0.07180 
0.01924 0.05009 
0.01482 0.06661 
0.03955 0.15844 
0.04363 0.16969 
0.12263 0.23328 
0.09452 0.24626 
6.34248 0.47990 
0.14069 0.39721 
0.32965 1.02191 
0.30064 0.63099 
0.66865 0.71353 
2.08273 1.48422 
2.17492 2.40791 
8.89358 4.43000 
3.64616 6.93148 

0.00219 0.00239 0.00243 0.00216 
0.00871 0.00832 0.00927 0.00601 
0.02000 0.02020 0.02184 0.01328 
0.01504 0.01556 0.01857 0.01314 
0.03358 0.03268 0.03430 0.01799 
0.05041 0.04429 0.04535 0.01911 
0.02265 0.02194 0.02472 0.01907 
0.03194 0.03514 0.03410 0.01865 
0.08664 0.08045 0.08742 0.06338 
0.08900 0.07415 0.07822 0.04422 
0.06896 0.07863 0.07169 0.08833 
0.09850 0.09681 0.09796 0.07532 
0.18965 0.18889 0.18600 0.13238 
0.22826 0.25000 0.25275 0.14462 
0.29585 0.33152 0.31634 0.83258 
0.30990 0.36084 0.34467 0.76422 
0.72636 0.61338 0.68373 5.29129 
0.52149 0.58179 0.56019 0.69512 
1.31847 1.41485 1.33607 1.79781 
0.94547 0.96651 0.86850 1.40442 
0.95199 1.12711 0.98651 1.84000 
2.06059 2.26208 2.11019 2.52024 
3.49099 3.76920 3.42716 8.19024 
7.55024 7.73181 6.84090 17.19706 
7.64363 8.69818 8.84090 11.69482 
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TABLE 3: Relative performance of sparse solvers (x/MA28) 

I Test II SMPAK I Y12M I IMSLC I IMSLR I IMSLR+C I PCGPAK3 I 
TESTl 
TEST2 
TEST3 
TEST4 
TESTS 
TEST6 
TEST7 
TESTS 
TEST9 
TESTl0 
TESTll 
TEST12 
TEST13 
TEST14 
TESTIS 
TEST16 
TEST17 
TEST18 
TEST19 
TEST20 
TEST21 
TEST22 
TEST23 
TEST24 
TEST25 

C = columnwise pivot 
R = rowwise pivot 

0.150 
0.175 
0.162 
0.236 
0.154 
0.160 
0.265 
0.078 
0.276 
0.098 
0.370 
0.200 
0.199 
0.129 
0.281 
0.309 
3.077 
0.234 
0.054 
0.157 
0.346 
0.566 
0.263 
0.132 
0.023 

R+C = row and columnwise pivot 

0.830 
0.964 
0.710 
0.987 
0.628 
0.679 
0.982 
0.811 
0.586 
0.575 
0.964 
0.900 
0.795 
0.501 
0.534 
0.806 
0.233 
0.661 
0.168 
0.329 
0.369 
0.404 
0.292 
0.066 
0.044 

1.334 1.459 1.479 1.317 
1.393 1.330 1.482 0.962 
0.983 0.993 1.074 0.653 
1.435 1.484 1.772 1.253 
0.816 0.794 0.833 0.437 
1.123 0.987 1.010 0.426 
1.435 1.391 1.567 1.209 
1.140 1.254 1.217 0.666 
0.859 0.798 0.867 0.628 
0.712 0.593 0.626 0.354 
1.327 1.513 1.380 1.700 
1.331 1.308 1.323 1.017 
0.952 0.948 0.934 0.664 
0.674 0.738 0.746 0.427 
0.678 0.760 0.725 1.907 
1.014 1.181 1.128 2.501 
0.352 0.298 0.332 2.567 
0.867 0.968 0.932 1.156 
0.217 0.232 0.220 0.295 
0.494 0.505 0.454 0.733 
0.493 0.584 0.511 0.953 
0.560 0.615 0.574 0.685 
0.423 0.457 0.415 0.992 
0.112 0.115 0.102 0.255 
0.048 0.055 0.056 0.074 


