
TREATMENT OF LOGICAL LOOPS IN PSA FOR RISK BASED
DECISION MAKING

Joon-Eon Yang, Sang-Hoon Han and Young-Ho Jin
Korea Atomic Energy Research Institute, Korea

ABSTRACT

In most PSAs implementing the fault/event tree approach, there are several limitations to
get the proper minimal cut sets. One such limitation is the logical loop, which occurs due
to mutual dependencies between support systems. Until now, the logical loop has been
removed by ignoring some relations between the systems. However, this conventional
method might generate some nonsense cut sets or miss some important cut sets since the
real relations between the systems are ignored. This kind of error can lead to
misinterpretation of PSA results and, therefore, improper decisions. An analytical method
to solve the logical loop exactly has been developed by the Korea Atomic Energy Research
Institute (KAERI) and implemented in a cut set generation code called the KAERI
Reliability Analysis Package (KIRAP). In this method, the Boolean logic of the fault tree
is regarded as a kind of network in which the events/gates are regarded as the nodes. The
paths of this network are examined by a top-down approach, and the path, which causes
the logical loop, is identified and deleted based on the Boolean criteria. The logic of the
fault tree is therefore changed into new logic without logical loops while maintaining
proper relations between systems.

INTRODUCTION

Recently, Probabilistic Safety Assessment (PSA) has been widely used as a tool to support the decision
making in various fields of nuclear industry, such as operation and maintenance. For instance, the in-
service test interval can be determined based on the PSA results. In order to make proper decisions based
on the results of PSA, we should have the proper results. The event and fault tree method is used in most
PSA and, in such cases, we get the minimal cut sets as results. A minimal cut set means a combination of
events that results in the failure of a system or a sequence. However, there are several limitations to get the
proper minimal cut sets, such as the truncation limit used in generating the cut sets, etc. One such limitation
is the logical loop, which occurs due to mutual dependencies among the support systems. For instance,
service water system supports the electric power supply system, and vice versa. Therefore, when we model
these systems by fault trees, logical loops are generated in the fault tree model. Since most cut set
generation computer codes cannot handle the fault tree logic with the logical loop, until now the logical
loop has been removed manually by ignoring some relations between the systems. For this, the analyst has
to develop other fault trees of the systems without logical loops and use these fault trees instead of the
original ones to remove the logical loop (Coles & Powers, 1989).

However, this conventional method might generate some nonsense cut sets or miss some important cut sets,
since the real relations between the systems are ignored. Such errors can cause a problem, not only when
we calculate the reliability of a system, but also when we calculate the frequencies of accident sequences.
Therefore, this kind of error can lead to a misinterpretation of the PSA results. For instance, if a minimal
cut set representing the relation between system A and B is not generated, a plant’s staff could make a
decision to perform a maintenance of system A, thinking that system A does not affect the reliability of
system B. However, it is not a proper decision. Another approach to solve the logical loop is the iteration
method, that has been developed by the Korea Atomic Energy Research Institute (KAERI). In this method,

first we assumed that there are no dependencies between support systems, and we get the Boolean equations
for each support system. During the next step, we updated the Boolean equations of the support systems
using the Boolean equations of the previous step. Such iterations continue until the Boolean equations of
each support system converge to some final Boolean equations. In order to use this method, it is necessary
to repeat the quantification processes and to review the generated cut set at each iteration step. It is difficult
and time-consuming work.

Therefore, an analytic method to solve the logical loop exactly and efficiently has been developed by
KAERI and implemented in a cut set generation code called the KAERI Reliability Analysis Package
(KIRAP) (Yang & Han, 1997). This method enables us to modify the fault tree logic automatically and
exactly in one quantification step based on the Boolean logic of the fault trees. In this method, the Boolean
logic of the fault tree is regarded as a kind of network in which the events/gates are regarded as the nodes.
The paths of this network are examined by a top-down approach, and the path that causes the logical loop
is identified and deleted based on the Boolean criteria. The logic of the fault tree is therefore changed into
new logic without logical loops while maintaining proper relations between systems. We compare the
minimal cut sets obtained by the conventional and new methods in order to show the advantages of the new
method over the conventional one.

ANALYTICAL METHOD TO BREAK THE LOGICAL LOOP

Boolean Expression of Fault Tree Logic with the Logical Loops

For instance, let us assume that there are three support systems: A, B and C (Figure 1).

The failure of support system A, then, can be represented by the following Boolean equation:

A = Aa+Ab.B+Ac.C, ... (1)

where A = a set representing the failure of system A,

Aa = a subset representing the failures of system A's part that cause the failure of system A
without the simultaneous failure of system B or C,

Ab = a subset representing the failures of system A's part that cause the failure of system A
when the simultaneous failure of system B occurs,

Ac = a subset representing the failures of system A's part that cause the failure of system A
when the simultaneous failure of system C occurs,

Figure 1 The Relations among Three Support Systems: A, B and C

Aa
Ac

Ab

Ab.c
Ab+c

B

C

+ = OR operation, and

. = AND operation.

However, in some cases, there can be some common parts between subset Ab and Ac. So, to ensure that
there are no common parts between Ab, and Ac, we restructure the above equation into the following:

A = Aa+Ab.B+Ac.C+Ab+c.(B+C)+Ab.c.B.C, (2)

where Ab+c = a subset representing the failures of system A's part that cause the failure of system A
when the failure of system B or C occurs,

Ab.c = a subset representing the failures of system A's part that cause the failure of system A
when the failures of system B and C occur at the same time.

Hence, the following constraint can be applied to Aa, Ab, Ac, Ab+c and Ab.c:

Ai.Aj =Φ (the empty set) (i,j = a, b, c, b+c, b.c; i≠j). (3)

This constraint means that there are no common parts among the subset Ab, Ac, Ab+c and Ab.c.

In the same way, the failures of system B and C can be represented by the following Boolean equations,
respectively:

B = Bb+Ba.A+Bc.C+Ba+c.(A+C)+Ba.c.A.C, (4)

C = Cc+Ca.A+Cb.B+Ca+b.(A+B)+Ca.b.A.B. (5)

Analytical Method to Break the Logical Loops Automatically

Let us call the subsets such as Aa, Bb and Cc the basic event sets, and the subsets, such as Ab, Ac, Ab+c, Ab.c,
etc., the conditional event sets. The basic event set of each system represents the failures of each system's
main parts causing the failure of each system without simultaneous failure of related support systems, e.g.,
the motor failure of a pump. The conditional event set represents the failure of a system’s part that can
cause the failure of the entire system when the related support system fails simultaneously, e.g., the
simultaneous failures of the instrument air system and the local backup air tank for a system. The element
of a basic event set or the elements of a conditional event set when combined with those of other support
systems’ basic event sets can cause the failure of that system.

If we expand equations (2), (4) and (5) for system A, we will get many terms with the form shown below:

Ai.[B or C].A. .. (6)

where Ai = an element of the conditional event set of system A, e.g., Ab or Ac or Ab+c or Ab.c,

[B or C] = the conditional event set for system B or C that appears on the right hand side of
equations (4) and (5).

Equation (6) represents the relation where a failure of system A causes the failure of system B or C, which
in turn, causes the failure of system A again; that is, the logical loop. For the case where Ai is a basic
event, e.g., Aa, this term is reduced by a Boolean reduction rule X+X.Y=X] since Aa already exists in
equation (2).

Let us expand the above equation for a case where Ai is Ab:

Ab.[B or C].A = Ab.(Aa+Ab.B+Ac.C+Ab+c.(B+C)+Ab.c.B.C).[B or C]

= Ab.Aa+Ab.B+Ab.Ac.C+Ab.Ab+c.(B+C)+Ab.Ab.c.B.C).[B or C]

(the underlined terms become Φ by equation (3))

= Ab.B.[B or C]

∴ {Ab.[B or C]}.A = {Ab.[B or C]}.B (7)

The above Boolean equation is valid only for the following three cases, since we assume that A and B are
different systems:

i) Ab = Φ, .. (8)

ii) [B or C] = Φ and .. (9)

iii) Ab.[B or C] = Φ or Ai.[B or C].A = Φ. (10)

For the first and second cases, these terms would not be generated during the expansion. Therefore, if we
get these kind of terms while we expand the above Boolean equations, only the relation of the third case is
correct. So, in such a case, we do not need to expand these terms, but need only to delete them.

The Boolean equations for m support systems can be expressed as the following:

ni = ni*+ΣjCond i(j)f i j(n1,n2,...,ni-1,ni+1,...,nm) (11)

nj = nj*+ΣkCond j(k)fjk(n1,n2,...,nj-1,nj+1,...,nm) (12)

where ni = a set representing the failure of the i-th support system,

ni*= a basic event set of the i-th support system,

Cond i(j) = the j-th conditional event set of the i-th support system and

f i j(n1,n2,...,ni-1,ni+1,...,nm) = the combination of n1,n2,...,ni-1,ni+1,...,nm corresponding to
the j-th conditional event set.

Since the intersection of each conditional event is an empty set, as shown in the above example, when we
expand the above equations for ni, we will get terms like the following:

Cond i(k).[terms of nj≠i].nI... (13)

= Cond i(k).[terms of nj≠i].{ ni
*+ΣjCond i(j)f ij (n1,n2,...,ni-1,ni+1,...,nm)}

= Cond i(k).[terms of nj≠i].nk... (14)

The term Cond i(k).[terms of nj≠i] .ni should be an empty set for the same reason as above.

To implement the above method, we expand the logic of the original fault tree using the top-down
approach. During the expansion, we can use equation (14) as the criteria to decide which terms cause the
logical loops and should be deleted. By expanding and deleting the logic of the fault trees, we will get the
new logic of the fault trees without the logical loops while maintaining proper relations among the support
systems. These new fault trees are used to generate the minimal cut sets for the support systems.

APPLICATION TO AN EXAMPLE PROBLEM

The developed method is tested for an example case. We quantify the sample core damage frequency
(CDF) based on two typical event trees of CANDU PSA: a Small Loss of Coolant Accident (LOCA) and a
General Transient. The front-line systems are shown in Table 1 with their dependencies to support systems.
The dependencies between the support systems are shown in Figure 2. Simplified fault trees for the front-
line and support systems are developed to quantify the sample CDF. The Boolean equations of some fault
trees are shown below:

FW = FW-HW + (RCW * FW-RCW-BKUP + IA * FW-IA-BACKUP + NEPS).

RSW = RSW-HW + (IA + NEPS).

RCW = RCW-HW + (RSW + IA + NEPS).

IA = IA-HW + (RCW + NEPS).

NEPS = NEPS-HW + (RSW * NESP-RSW-BKP).

where FW = Failure of Feedwater System,

NEPS = Failure of Normal Electric Power Supply System,

EPS = Failure of Emergency Power Supply System,

RCW = Failure of Recirculated Cooling Water System,

RSW = Failure of Raw Service Water System,

IA = Failure of Instrument Air System.

In the above Boolean equations, the post-fix -HW represents the failure of hardware, and -BKP represents
the failure of the backup system. For instance, in the Boolean equation for NEPS, NEPS-HW represents
the hardware failure of the normal electric power supply system, RSW represents the failure of the raw
service water system and NESP-RSW-BKP represents the failure of the RSW backup system for the
normal electric power supply system. An example of a fault tree for an electric power supply system is
shown in Figure 3.

Table 1 Dependency Table of Front Line Systems

System NEPS EPS RCW RSW IA

Reactor Shutdown O X X X X

Steam Generator Pressure Relief &
Control

O X X X O/BKP

Crash Cooldown O X X X O/BKP

Feedwater System O X O/BKP X O/BKP

Emergency Water Supply System O O O X O/BKP

Condensate System X X X X X

Shutdown Cooling System O X O X X

Emergency Core Cooling System O O O/EWS X X

Moderator Heat Sink O X O X X

As shown in Figure 2, there are five logical loops between the support systems. These logical loops are to
be broken to quantify the sample CDF. We have solved these logical loops using three methods and
compared the results of each method. The three methods are (1) the developed method, (2) the iteration
method and (3) the modified fault tree method. We briefly explain the latter two methods below.

• • Iteration Method:

This method has also been developed by KAERI. In this method, we first assume that there are no
dependencies between support systems, and we get the Boolean equation for each support system. During
the next step, we update the Boolean equation of the support systems using the Boolean equation of the
previous step. Such iterations continue until the Boolean equations of each support system converge to
some final Boolean equations.

• • Modified Fault Tree Method:

In this method, we identify the logical loops between support systems and also identify the breaking points
that have a minimal effect on the quantified results. Based on the breaking points between support systems,
we develop new fault trees without logical loops and these fault trees are used to quantify the final results
instead of the original ones. The modified fault tree can be used in two ways: one is to link these fault trees
directly to the front line systems and the other is to link these fault trees to other support systems. For this
example case, we adopt the later approach.

Figure 2 Dependencies and Logical Loops among Support Systems

Loop 1: IA--RCW--IA
Loop 2: NEPS--RSW--NEPS

Loop 3: NEPS--IA--RSW--NEPS
Loop 4: NEPS--RCW--IA--RSW--NEPS

Loop 5: RSW--RCW--IA--RSW

NEPS

RSW

RCW EPS

IA

An example of a fault tree is shown in Figure 3. This fault tree shows a logical loop between NEPS and
RSW. In the developed method, the NEPS gate marked as a gray box in Figure 3 is identified as a cause of
logical loop and deleted automatically. On the other hand, in the modified fault tree method, a new fault
tree without logical loops is developed for NEPS and used instead of the original NEPS fault tree in order
to remove the logical loop as shown in Figure 4.

The differences of quantification results using the above three methods are shown in Table 2. The
developed and iteration methods give the exact same results. The modified fault tree approach, however,
generates some nonsense cut sets, i.e., the wrong CDF value, and these cut sets also affect the importance
of basic events as well (Figure 5).

Figure 3 Fault Tree for NEPS
with Logical Loop

Figure 4 Modified Fault Tree for NEPS
without Logical Loop

NEPS

NEPS-HW NEPS-SUPP

NESP-RSW-BKP RSW-BRK

RSW-HW RSW-SUPP-BRK

NEPS-HW NEPS-SUPP-BRK

IA-BRK NEPS-BRK

NEPS-RSW-BRK

NEPS

NEPS-HW NEPS-SUPP

NESP-RSW-BKP RSW

RSW-HW RSW-SUPP

IA NEPS

TABLE 2 QUANTIFICATION RESULTS

Developed and Iteration Methods

NESP-RSW-BKP IA-HW EPS IE-GT

NESP-RSW-BKP IA-HW EWS-IA-BACKUP IE-GT

NESP-RSW-BKP IA-HW EWS-HW IE-GT

Conventional Method

NESP-RSW-BKP EPS IE-GT

NESP-RSW-BKP EWS-IA-BACKUP IE-GT

NESP-RSW-BKP EWS-HW IE-GT

CONCLUSIONS & DISCUSSION

An analytical method has been developed and applied to an example problem to solve logical loops between
support systems. The result shows that the conventional method might cause some nonsense cut sets. Such
nonsense cut sets are generated due to the arbitrary breaks of fault trees for support systems. We cannot
say that the conventional method always gives improper results. It depends upon the structures and
relations between the fault trees of support systems. In the conventional method, it is very difficult and
time-consuming to develop new fault trees to break the logical loops and to review the generated cut sets,
whether or not nonsense cut sets exist. Such nonsense cut sets might cause inaccuracy and
misinterpretation of the final PSA results. For instance, as shown in Figures 5, the importance of the
hardware failure of an electric power system is underestimated and the RSW backup system for an electric
power system is overestimated. Of course, these values are based on the assumed hardware failure rate,
therefore this importance analysis is not an exact one. However, this example shows that there is a
possibility that the conventional method could lead to misinterpretation of PSA results.

Even though the iteration method gives exact results, the method requires iteration of the quantification
process. It is necessary to review the minimal cut sets for each iteration step to check whether or not the
minimal cut sets for each support system have converged. This method therefore also requires a lot of
manpower.

Comparing the above two methods, the developed method gives an exact result in one quantification
process and guarantees the complete minimal cut sets. By implementing the developed algorithm to solve
the logical loop, therefore, we don’t need to worry about inaccuracy and/or incompleteness of PSA results
caused by the logical loops, and we can avoid errors based on improper PSA results. For instance, when we
select the items for the in-service test based on PSA results, the nonsense cut sets caused by logical loops
might have a big effect, since such cut sets are related to support systems. Or, when we use a risk monitor,
there can be a configuration change in a support system. This might change the structure of logical loops,
then conventional method might cause a problem. The developed method, however, can handle such case as
well.

Figure 5 Fussel-Vesely Importance of Basic Events

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

NEPS-H
W

EW
S-H

W

EW
S-IA

-B
ACKUP

EPS

RS-H
W

IA
-H

W

FW
-H

W

SDCS-H
W

RCW
-H

W

NESP-R
SW

-B
KP

FW
-IA

-B
ACKUP

FW
-R

CW
-B

KUP

SGPRC-IA
-B

KUP

RSW
-H

W

CND

ECCS-H
W

M
HS-H

W

CC-IA
-B

KUP

Components

F
V

 Im
p

o
rt

an
ce

New

Conventional

-
□

~

■ ~

- - - -- - ~ ~

- - ~ ~ •
I ...,_ ,...,_ - - -

In addition to logical loops, there are a number of other problems, which cause the inaccuracy, and/or
incompleteness of PSA results. The developed algorithm is a means of eliminating one such problem to
derive proper PSA results and/or proper decisions based on such results.

REFERENCES

Coles, G.A. and Powers,T.B. “Breaking the Logic loop to Complete the Probabilistic Risk Assessment”:
Proceedings of PSA ’89, International Topical Meeting Probability, Reliability, and Safety Assessment,
Pittsburgh, 1989, p.1155, American Nuclear Society, La Grange Park, IL, 1989

Yang, J.E. and Han, S.H. et al. "Analytic Method to Break Logical Loops Automatically in PSA".
Reliability Engineering and System Reliability. Vol. 56, No. 2, p.101 , 1997.

KEY WORDS

Logical Loops, Support Systems, Dependency, Boolean Criteria, Risk Based Decision Making.

	TREATMENT OF LOGICAL LOOPS IN PSA FOR RISK BASEDDECISION MAKING
	ABSTRACT
	INTRODUCTION
	ANALYTICAL METHOD TO BREAK THE LOGICAL LOOP
	Boolean Expression of Fault Tree Logic with the Logical Loops
	Figure 1 The Relations among Three Support Systems: A, B and C
	Analytical Method to Break the Logical Loops Automatically

	APPLICATION TO AN EXAMPLE PROBLEM
	Table 1 Dependency Table of Front Line Systems
	Figure 2 Dependencies and Logical Loops among Support Systems
	Figure 3 Fault Tree for NEPS
	Figure 4 Modified Fault Tree for NEPS

	TABLE 2 QUANTIFICATION RESULTS
	Figure 5 Fussel-Vesely Importance of Basic Events

	CONCLUSIONS & DISCUSSION
	REFERENCES
	KEY WORDS

