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ABSTRACT 

In this paper we describe the new 2-D and 3-D supercell geometries that can now 
be treated by the EXCELL module of the code DRAGON. We also present the new 
pre-homogenization module that. can be used to reduce the dimension of the collision 
probability matrix. Finally we discuss the modifications to the code that were required 
to  extend the use of periodic boundaries to a more generaJ class of ge~met~ries. 

I. INTRODUCTION 

Because the new computers currently available on the market, have very large memory 
storage capabilities and computing power, problems previously considered too complex 
to solve with a lattice code are now being requested frequently by users. These new 
geometries are often needed for code validation purpose where typical experiments provide 
fine mesh reaction rate distributions inside a cell.['] In addition, various code users require 
CANDU simulations that reflect more closely the actual changes in the core which take 
place during a loss of coolant accident. 

In fact, the old version of DRAGON already had extensive geometry modeling capabi- 
lities.12] For instance, it. could be used to analyze 2-D and 3-D reactor assemblies of 
mixed Cartesian-cylindric cells as well as 2-D cluster cell similar to those found in a 
CANDU reactor. However, there were often restxictions in these geometry definition 
which seemed somewhat arbitrary. For instance, a 2-D Cartesian assembly containing 
cells with concentric annular sub-regions had to be defined in such a way that the center 
of each annulus coincides with the center of the Cartesian cell. We therefore decided to 
remove from the code a large number of geometric restrictions. As a result it was possible 
to implement in the EXCELL module of DRAGON a large number of new discretization 
options which can be useful for a fine mesh treatment of 2-D assembly or 3-D supercell 
geometry. In addition we have generalized the use of periodic boundary conditions, which 
was formerly available only for the analysis of 1-D geometry, to 2-D and 3-D geometries. 

One problem which became rapidly apparent when such fine mesh discretization 
schemes are used in DR,AGON is that the size of the collision probability matrix which in- 
creases as N2 with N the number of regions in the problem often becomes overwhelming. 



Accordingly it was deemed useful to write for DRAGON a pre-homogenization module 
which could be used to reduce the number of independent regions to be treated in any 
given transport cahlation.  This module can be used to impose beforehand the same 
neutron flux distribution in different regions of the fine mesh geometry provided these 
regions all contain the same mixture. The specific choice of the regions to combine is left 
to the user and can be based on internal symmetries of the core or 011 the knowledge t,hat 
the flux will vary slowly from one region to another.I3> 4] 

I11 this paper we will describe the new geometries that can now be treated using the 
code DRAGON. We will also comments on t.he modifications to DRAGON that were 
required to implement these options in a consistent fashion.I5] 

11. THE DRAGON CODE 

The code DRAGON is used to solve the transport equa,tion for the neut'ron flux dis- 
tribution inside a reactor cell or a .~senibl~.[~^ It. generally relies on the collision probability 
method to discretize spatially the multigroup transport equation to the form:[6] 

where the vectors @ and @ each have N components (ff and Qf which represent respec- 
tively tthe average neutron flux and source in region V,  of the cell. The N x N collision 
probability matrix 69, which includes the effect of the boundary conditlions is generally 
evaluated using the relations 

where A = Ad is the A x A reflection/tra~nsmission matrix giving the rela*tion between 
the outgoing current a,t surface Sa and the incoming current at surface Sa. The collision, 
leakage and transnlission probabilities have components which are given respectively by 
the relations 

In the EXCELL module of DRAGON there are two independent options that can be used 
to evaluate the collision probability matrix fi&, for 2-D Cartesian problems, corresponding 
respectively to the standard and cyclic t,racking methods while for 3-D problems, only the 
standard tracking met hod is currently available. 

For a 2-D problem, the s t a~~da rd  tra,cking method is based on the assumption that* 
the specific geometry is isolated in space. The 4-D integral of Eqs. (4) to (6) can then be 
reduced to the form: 



such that for the cases when region i is located a,tl a position in space which is different 
from j we will have 

where 1 and T are both functions of ift and h as described in Figure 1. If region i and j 
are phy~ica~lly identical we will rather use: 

Similar relations can also be obtained for FiJa and 
After replacing the integration over if and h by simple trapezoidal quadratures thereby 

defining a specific integration line, DRAGON then undertakes the tracking process. This 
consists in identifying for a specific integration line the path length li associated with each 
subregion of the problem and the initial and final surfaces intersecting the line. After 
this information has been generated for each line, the probability integration procedure 
boils down to a double sum over Bickley-Naylor functions. Once the collision, leakage 
and transmission probabilities have been evalua,t,ed for a region isolated in space, there 
remains the problem of applying the boundary conditions which involved the evaluation 
of the matrix 

In the case where only reflection boundary conditions are considered (isotropic reflection 
a t  a surface), A  = I and the inversion procedure represented by the second term of the 
above eq~at~ion can be performed using very simple methods because the matrix to invert 
is diagonally dominant. I11 the case where one or more surface is associated with a void 
boundary condition, the problem is slightly more complex. Instead of inverting the full 
matrix we will consider only the submatrix involving the reflective surfaces (which is 
again diagonally dominant) since according to  the last term of the above equation, the 
components of fi: associated with void surfaces will vanish identically. Finally, in the case 
where some of the surfaces are associated with periodic boundary conditions, then the 
matrix A is no longer diagonal, and the diagonal dominance of ( A 1  - p : ) '  is no longer 
ensured. Accordingly, an inversion procedure which includes pivoting is required. In the 
old version of DRAGON, the matrix inversion procedure which was used to compute fizs 
did not include pivoting and could fail. It was replaced in the new version of DRAGON 
by a more robust matrix inversion procedure. 

It is also possible to use in DRAGON the cyclic tracking method to analyze 2-D 
Cartesian problems.[7] In this case instead of considering the cell to analyze as being 
isolated in space, one uses the boundary conditions to unfold the cell to infinity. In 
the case where only void or albedo boundary conditions are considered this unfolding 
consists in reflecting each cell along its external surfaces. As a result, the period of the 
infinite lattice is twice the initial lattice pitch in each Cartesian direction. Since the 
explicit boundary conditions are already taken into account, one is therefore left with a 



direct evaluation of 0: using Eq. (4) where the 4 D  integration is now replaced by a 3-D 
integration of the form: 

such that 

+ XA] [ 
- exp - I 

- 4 . j - u  + exp - ( 1 - exp [ - TcP  ] ) - I  ,/m (11) 

where T, represents the product of the albedo for each surface crossed by an integration 
line. Note that in the case where all the surface have void boundaxy conditions, Tp = 0 
and Eq. (11) can be integrated analytically over p to Eq. (8). The numerical qua.drature 
required in this case is such that all the integration lines selected are periodic, their period 
corresponding to the optlica,l length rP. In the c.ase where periodic boundary conditions 
are also considered, the simple unfolding of the cell by reflection which was implemented 
in DRAGON is no longer valid. 

We therefore had to modify the tracking procedure of DRAGON to account for the 
fact that the unfolding by reflection will be used only for reflective or voided surfaces 
while the unfolding of t*he cell to infinity will be accounted for by cell translation in a 
direction normal to the surfaces having periodic boundary conditions. In addition we 
had to modify the definition of Tp in DRAGON since in the case of albedo boundary 
conditions a neutron leaving one cell by an external surface would effectively cross only 
one external surface before entering a different cell. In the case where periodic boundazy 
conditions are considered, two different surface are encountered. 

For 3-D calculations, only the standard tracking procedure is currently available. We 
will therefore consider a cell isolated in space and use a 2-D trapezoidal quadrature for 
the dx and dy integration while for the angular integration we use a 2-D equal weight, 
angular integration: 

with 

in the case where z and j are located at different spatial position and 

if region i a,nd j are physically identical. Here 1 and r are now both functions of (1 and 3 
(see Figure 2). 



In DRAGON, once the geometry tracking procedure has been completed, each track 
segment can be normalized. According to Eq. (4) the segment length can be used to 
evaluate numerically the volume 6 associated wit4h each region and each tmcking angle 

(<pk in 2-D) using the relation: 

Since V} will generally differ from V ,  each segment length can be corrected using 

111. NEW DRAGON GEOMETRIES 

One can find in Figure 3 a typical geometry which can be processed by DRAGON. 
Up to now there were some restrictions on the Cartesian mesh splitting which could be 
used with such geometxies. For example it was possible for a cell containing a 2-directed 
cylinder to subdivide arbitrarily the mesh spacing in the Z direction while in the X and 
Y directions the maximum Cartesian mesh splithing allowed represented a subdivision in 
2 equal parts of the cell in these directions. Another restrict,ion consisted in the fact that. 
only Cartesian cell containing annular regions located at the center of the cell could be 
processed. Finally, it was also impossible for mixed Cartesian-cylindric cells with a mesh 
splitting to associate a different mixture t,o each individual region of the cell. 

One of the problems encountered when a finer Cartesian mesh decomposition ( K  x L) 
of such a cell is considered consists in determining the exact number of independent regions 
that will be associated with the cell. The second problem one faces is the evaluation of the 
exact volume associated with each region. As we rioted in the previous section this volume 
is generaily required for track length normalization. However, even if this normalization 
procedure in DRAGON could be by-passed, using approximate rather than exact volumes 
affects the value of the collision probability matrix and thereby the flux solution. 

In the new version of DRAGON we have tackle these problems in the following way. 
Each 3-D Cartesian cell containing N concentric cylinders of radius rn is first projected 
on a plane perpendicular to these cylinders. Then the resulting 2-D Cartesian cell is 
discretized according to the users specification and to each Ca,rtesian sub-cell ( k ,  I) located 
a t  x? < x < xt} and y\ $ y < y; are associated (N + 1) 2-D regions of identical volume 
v k J  = (x f  - X S ) ( ~ ~  - &), region 1 to N representing respectively the N concentric 

cylinders centered at ( z r ,  gr). Then staxting with the most outer cylinder one determines 
whether the Cartesian region ( k ,  Z) is located totally outside or inside the specific cylinder 
or intersects it. 

In the case where the Cartesian region is located outside the cylinder of outer radius 
rÃ£ the volume of region 1 to n vanishes identically while in the case where it is located 
inside the region of radius rn the volume of region n + 1 to N + 1 vanishes identically. 
Finally when the Cartesian mesh intersects a cylinder, one can compute the volume of 
intersection AV;!' between the mesh ( k ,  l)n and tmhis cylinder using the relation: 



where the volume v;' represents the intersection between the cylinder and the plane 
located to the left of surface x: and below $. 

Defining V1' to represent the cylinder surface located to the left of t'he plane defined 
by x. we can write 

0 for U#j < -rn 
for U j  > r.,. 

ajr; + ~jJr̂ = otherwise 

aj = arccos (-:) 
where qk = V, when uj = x$ - xT is select,ed. Using uj = yj - yr in the above equation 
for V, results in 5' which represents the cylinder surface locat'ed below tohe plane defined 
by surface $ . 

In the case where tqhe lines x = xf and y = y$ intersect inside the cylinder of radius 
rn we obtain 

In all the other cases, depending on the location of the various planes with respect t o  the 
center of the cylinder we will use: 

( 0  if uf < 0 and u' < 0 
if u? < 0 and u' > 0 

i' if uf > 0 and u, < 0 

Once all the Cartesian regions associated with a 2-D mapping of the 3-D cell have 
been processed in the same way, the next step will consists in extracting from the set of 
K x L x ( N  + 1) regions those which will have a non-vanishing 2-D volume. Then the 
explicit volume of each region in a 3-D plane can easily be obtained. 

Because DRAGON already embodied a quite general tracking procedure the imple- 
mentation of the new geometric options was quite simple. Each tracking line is first 
defined by a direction 0 and a starting point (xs, y,, 2,) located outside the 3-D assem- 
bly. Then for each of the Cartesian directions, one locates the 3-D intersection point 
(xi, yi, z i )  between the integration line and the various Cartesia,n planes perpendiculax to 
the specific direction the line may encounter. Similarly, for each possible cylinder in the 
assembly one determines if it. can intersect the integration line and the two locations at 
which this intersection occurs (x*, y+, z*). The distance between the starting point and 
each intersection point is then comput'ed using 

and the Di are classified by increasing va.lue. It is then simple to identify each track 
segment with a specific region number to generate a DRAGON integration line. 



IV. PRE-HOMOGENIZATION MODULE 

In the previous releases of DRAGON the tracking module already included an auto- 
matic pre-homogenization module. It was generally used to reduce the number of regions 
in an assembly in the cases where reflection symmetries were imposed as boundary condi- 
tions. The new pre-homogenization module can be used after the tracking of a DRAGON 
geometry to impose additional symmetries in the flux distribution or to combine inde- 
pendent regions where the flux will be assumed identical. This last option is particularly 
useful in the case where the number of independent regions in the geometry becomes very 
large. 

This new pre-ho~nogenization module can be used to re-define the fine mesh associated 
with each cell to a more convenient mesh. As an example, consider the 2-D DRAGON 
geometry described in Figure 4 which is assumed symmetric under a TT rotation of the 
cell. It can easily be transformed to the geometry Figure 5 using the DRAGON pre- 
homogenization module even if this last geometry cannot be explicitly analyzed using the 
DRAGON tracking module. 

Typically the pre-homogenization module of DRAGON works in the following way. 
Assuming that a set of I regions z = N - I + 1 to N that contain the same mixture all 
see the same flux <bi and source Qf the transport equation can be written in the form: 

we can then define for the set of regions I the following collision probabilities: 

We ca.n then write: 

Accordingly, the collision probability for the macro region I can be obtained by summing 
the function Fu over all zones z and j included in I. Note that Fi,j will take different 
forms depending on the respective location of region z a,nd j .  In fact, assuming all the 
region z > N - I are disconnected, then the sum above will be carried out using an 



expression for Fu similar to that given in Eq. (13) except for the terms where z = j 
where we will use Eq. (14). On the other hand, if some of the regions z > N - I are 
physically connected, then we can further simplify the integration process. For example: 
if one assumes tohat region N and N - 1 have a common surface, then ea'ch integration 
line crossing both regions will travel a distance l N  + inside region I. The contribution 
of these two regions to the collision probability p u  will contain a term Fii which is given 
by: 

FIJ = (FN,N + FN.N-I) + (FN-I.N + FN-LN-I) 

which in 3-D yields: 

As expected t3his is the result we would have obtained if a single region of volume Vi had 
been considered. In DRAGON the pre-homogenizat ion module will therefore affec.t the 
tracking file in more than one way. First each fine mesh region number intersected by 
an integration line in the assembly will be replaced by its associated coarse mesh region 
number. Then the int'egration line will be compressed in such a way tha,t a sequence of 
line segments all associated with t,he same coarse mesh region number I will be replaced 
with a single track segment. 

V. NUMERICAL RESULTS 

The geometry we will study is illustrated in Figure 6 where 4 large Z-directed cylinders 
containing fuel a<nd a control rod represented by the small Y-directed cylinder are all 
immersed in heavy water moderator. The boundary conditions we will use are t,otal 
reflection on the top and bottom 2 faces and periodic boundary conditions in x and y. 
This geometry will be simulated in DRAGON using the coarse mesh model described in 
Figure 7 where the fuel rods are divided int40 3 regions containing respectively the fuel 
and coolant, the pressure and calandria tube and part of the moderator. Similarly, the 
adjuster rods will be divided into 3 concentric cylinders. The most external region will be 
associated with moderator, while the central ring represents the adjuster rod guide tube. 
The internal region contains the adjuster itself and can be fully inserted or extracted from 
the assembly. The Cartesian mesh containing the adjuster rod is subdivided into 2 equal 
parts in the x and z directions. An analysis of tthis cell using DRAGON results in a 
problem with 108 independent regions (since DRAGON automatically takes into account. 
tohe simplifications implied by the symmetry plane in the z direction). 

This coarse mesh geometry could have been described explicitly using the old DRAGON 
tracking procedure provided the moderator properties associated with the cooled and 
voided cell are identical. However, because the cylindric regions then allowed had to be 
centered in each Cartesian sub-cell, the current 3 x 3 mesh in the x - y plane would have 
had to be replaced by a 5 x 5 mesh in order to reposition the cylinder at the center of a 
cell. As a result the total number of regions would then have increased by 72. 

By using the new pre-homogenization module of DRAGON we can reduced even fur- 
ther the size of the problem to be solved by observing that the geometry is invariant 



under a rotation of TT around the z axis. As a result the size of the coarse mesh problem 
in the new version of DRAGON can be reduce tao 54 independent flux evahation, to  be 
compared with the 180 independent flux evaluation which would have been required with 
the old version of DRAGON. 

We have also considered the case where the DRAGON calculations are performed 
using a much finer mesh where the fuel and adjuster cylinders are further subdivided 
into 7 sub-regions, while the x and 2 Cartesian mesh surrounding the adjuster rods is 
subdivided in 8 rather than 2 equal regions. This specific choice of mesh was selected 
because the variation of flux in the region surrounding the adjuster rod is expected to 
be much more important than in the moderator region. As a result, a problem involving 
764 regions was generated, which after pre-homogenization (resulting from the v rotation 
invariance) was reduced to 382 regions which is only about twice as large as the coarse 
mesh problem would have required in the old version of DRAGON. 

Table 1: Reactivity worth of CANDU adjuster using various DRAGON model 

Once can find in Table 1 the results we obtained for the reactivity worth of the adjuster 
using the three models described above. As one can see the old DRAGON model with 
180 regions is about equivalentl to the new coarse mesh DRAGON model with only 54 
regions. On the other hand the use of a fine mesh model in DRAGON indicates that the 
coarse mesh model is not. really converged and that a finer mesh dis~ret~ization is really 
necessary to ensure an adequate evaluation of the reactivity worth of this adjuster. 

Model/ 
Mesh 
Old/Coarse 
New/Coarse 
New/Fine 

We also evaluated the 2 groups incremental cross sections resulting from the insertion 
of the adjuster on the homogenization cell. These are pre~ent~ed in Table 2. As one 
can see, the incremental cross section associated with the absorption cross section in the 
thermal group is about 0.4 % larger when the fine mesh model rather than the coarse 

Table 2: Two groups incremental cross sections for adjuster rods 

Kes 

Cross 
Section 

Ei. 
% 
E y  
S F 2  
s2-2 

p (mk) 
out-in 
-33.3 
-33.4 
-34.9 

out 
1.1142 
1.1153 
1.1108 

CPU 
minutes 

345 
280 
525 

in 
1.0745 
1.0753 
1.0693 

Coarse mesh 

(%) 
-0.74 
-6.85 
-0.21 
0.15 

-0.02 

Fine mesh 

% (%) 
-0.73 
-7.23 
-0.20 
0.15 

-0.01 



mesh model is considered. This shows the importance of adequately discretizing the 3-D 
supercell model. 

VI. CONCLUDING REMARKS 

The use of the new geometry options of DRAGON combined with the pre-homogeniza- 
tion module allows the user to perform a fine mesh discretization of a cell while keeping 
the number of regions to be analyzed to a minimum. These improvements which have 
been developed for use in the context of the collision pr~ba~bility method a,re suc.h that 
they can readily be used in the module of DRAGON which solved the transport equaiion 
using the method of  characteristic^.[^] 
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Figure 1: Int,egration parameters for general 2-D geometry 



Figure 2: Integration parametlers for general 3-D geometry 



Figure 3: A typical 3-D DRAGON geometry 



Figure 4: A valid DRAGON 2-D geometry 



Figure 5: A pre-homogenized DRAGON 2-D geometry 



Cooled Channel Voided Channel 

Adjuster rod 

Voided channel Cooled channel 

Figure 6: A 3-D CANDU assembly with adjuster rod. 
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