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Abstract 

In pursuit of best-estimate analysis for CANDU* safety and design issues, several 
computer codes that model such processes as systems thermalhydraulics, fuel behaviour, 
reactor kinetics, and reactor controllers will be required to interact with each other to 
facilitate the modelling of integrated effects among reactor systems. It would be 
cumbersome, in terms of usage, software management, and quality assurance practices, to 
incorporate all potential numerical models into a single computer code. Instead, a 
'coupled-code" methodology can be employed that relies on message-passing via 
computer network protocols to exchange the data among the computer codes. This 
approach has the advantage of maintaining the computer codes as separate entities which 
makes their usage, software management and quality assurance easier. In this paper, the 
coupled-code methodology is applied to the AECL thermalhydraulics code CATHENA 
(CANadian THErmalhydraulic Network Algorithm) so that it can be used in conjunction 
with other safety and design codes for better-estimate analyses of reactor behaviour. 
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INTRODUCTION 

When design engineers need to examine a condition or event that could affect the safety 
of a reactor, they customarily utilize computer codes to aid in their examination. Often 
two or more computer codes are needed to analyze such events because the models for 
the affected physical systems are not contained in a single code. If significant feedback 
occurs between physical systems that are not modelled by a single code then 
information (usually in the form of time-dependent boundary conditions) must be 
exchanged between the codes to capture the feedback behaviour [1,2]. Typically this 
information is exchanged manually between codes either in an iterative procedure until a 
converged solution is obtained or in a "start-stop" procedure over small time intervals 
[3,4]. This form of information exchange has limitations, most notably the time required 
to do the analysis and the difficulty in capturing rapid feedback among physical systems 
such as void-reactivity feedback encountered during some postulated events. Automating 
this information exchange would reduce the analysis time and provide a more efficient 
way of capturing feedback effects among reactor systems that are modelled by different 
codes. 

One way to automate information exchange between separate codes is to combine them 
into a single executable [ 5 ] .  This has the advantage of fast information transfer as all data 
remains in memory but can require considerable computer resources to load and execute 
if the original codes are large. Also, the combined-code executable becomes a new code 
itself and may be subjected to software quality assurance practices and procedures which 
can add overhead to its development and maintenance. An alternative to this approach is 
to keep the codes separate and couple them with a computer network through which 
pertinent data can pass. This approach has the advantage of maintaining the computer 
codes as separate entities which makes their usage, software management and quality 
assurance easier but it does require that an interface be built in each code so that the 
necessary data can be exchanged in a consistent and timely manner [6].  

In this paper, the design criteria and implementation of a network interface are described 
for the system therrnalhydraulic code CATHENA which gives it the ability to 
communicate with a variety of other safety analysis codes. This network interface makes 
use of a software package called PVM (Parallel Virtual Machine) which is a library of 
subroutines that performs all the necessary functions for a group of processes, potentially 
located on different computers, to work as a collective. It is a shareware package 
maintained and supported by Oak Ridge National Laboratories and is available for UNIX 
and Microsoft Windows operating systems. 

Implementation of the CATHENA network interface is demonstrated with a simulation of 
a power reduction in a CANDU 6 reactor. For this example, CATHENA is coupled to 
two other codes - a reactor controller code for Point Lepreau and a point neutron kinetics 
code. This example was chosen because the controller and point kinetics models reside 
in the current reference version of CATHENA permitting a direct means of verifying the 
network interface. Also, once the interface is successfully implemented with these 
models, the groundwork is laid for connections to other controller models such as those 
for Gentilly-2 or Wolsong and to other reactor kinetics models such as CERBERUS. 



DESIGN REQUIREMENTS 

To make the network interface as accessible as possible to CATHENA users and to 
minimize its development and maintenance, several design criteria were considered. 

Robustness 
The intent of the network interface is to be able to couple CATHENA to many types of 
analysis codes. In terms of usability and code maintenance it is desirable to have one 
interface that can handle all the desired connections, such as to 

a) multi-dimensional reactor kinetics codes, 
b) reactor controller codes, 
c) finite-element codes for structural behaviour of pipe components, 
d) fuel behaviour codes, or 
e) aerosol codes for aerosol transport in the primary heat transport system. 

One Reference Version 
Each reference version of CATHENA must contain all the source for the network 
interface which means the interface has to be coded so that it works in the same way on 
all supported CATHENA computer platforms. Also, CATHENA must operate 
unimpaired if network connections are not specified or network software is absent from 
the computer being used. It should be noted that if a network connection is requested and 
network software is absent then an appropriate error message should be provided to the 
user. 

Maintain CATHENA Solution Method 
As stated above, the network interface must be robust enough to handle connections to 
many types of safety analysis codes and be available on supported computer platforms. 
This requires that a protocol be established between CATHENA and any code connecting 
to it so that data can be transferred in a correct and consistent manner. As CATHENA is 
a finite-difference code (in time and space), it steps through the time domain of the 
problem by executing a main loop of coding for varying sizes of time intervals 
(commonly referred to as time-steps). CATHENA also has the ability of repeating a 
time-step if conditions in the thermalhydraulic system dictate that a smaller time interval 
was needed to capture the dynamics. 

Codes that connect to CATHENA must be able to follow CATHENA's time-step 
solution method. If data are transferred at every CATHENA time-step then any 
connecting code must allow for varying sizes of time intervals and be able to consider the 
possibility that a time-step will be repeated. It is also important that data transfers occur 
at a location in the code that is executed at every time-step. Often there are sections of 
coding that are not always executed, depending on system conditions, and data transfers 
in the sections are to be avoided. Based on these requirements, the network interface 
must provide enough information to a connecting code for it to handle CATHENA's 
solution method and the data transfers must be at a location within CATHENA where all 
the pertinent thermalhydraulic data is accessible at every time-step. 



Minimize Additional Code Maintenance 
CATHENA is written in FORTRAN-77 and to minimize code maintenance effort the 
network interface should also be written using standard FORTRAN-77 coding practices. 
The routines used to access the network must be portable to all supported computer 
platforms which means that if third-party software is used it too must be available on 
these supported systems. 

IMPLEMENTATION 

The approach taken in implementing the design requirements of the CATHENA interface 
was to minimize the amount of new internal coding and to maintain the basic processing 
structure. Although the potential for parallelism exists using the network interface, only 
sequential operations were considered for the first version. This means that for each data 
transfer to an external code CATHENA will send its data and wait, the external code will 
receive the data and perform its calculations for the given time interval, CATHENA will 
receive the results, and then CATHENA will continue its processing until the next time 
for a data exchange. By implementing a sequential processing approach initially, new 
internal coding is minimized and CATHENA's basic processing structure is maintained. 

One of the first challenges in building a coupled-code system is determining how start the 
simulation. Each code must start execution, establish a connection to the other codes in 
the system, and discover what data is to be exchanged. It was decided for the CATHENA 
network interface that the user would start CATHENA and then CATHENA would start 
the external codes. Using this start-up procedure, CATHENA becomes responsible for 
starting up the other codes and synchronizing communication instead of the user. 
Information needed to initiate the execution of each remote code would be contained in 
the CATHENA input file. To keep the interface as robust as possible, the input file 
would contain three pieces of information to start a remote process: 

1) The executable file name and location of the remote code. The location would 
include the network node and the directory on that node where the executable 
resides. 

2) The directory on the node where working files will be stored. 
3) The name of the input file for the remote code. This input file will be 

contained in the working directory. 

The input for the network interface is provided in a similar fashion as for the point 
kinetics and output models. In the System Control Model section of the input file, the 
user creates a 'REMOTE PROCESS' model that contains all the appropriate information 
regarding the start-up and data transmission. 

When the remote code is started by CATHENA it will read the two character strings 
containing the working directory and input file name, call an operating system routine to 
point to the working directory, and then open the input file and read its contents. Any 
remote code that is to be coupled to CATHENA through this interface must adhere to this 
protocol. Each remote code should have some mechanism for determining whether it was 



started by a user to be run as an independent process or whether is was started by 
CATHENA as part of a coupled-code simulation. The PVM software package (discussed 
below) provides an easy way of testing if a process was started by a user or another 
process. 

Parallel Virtual Machine (PVM) is a software package that enables a collection of 
heterogeneous computers to be used as a single computational resource [7]. The name 
Parallel Virtual Machine refers to the virtual parallel computer that is created when a 
group of computers are networked together with the PVM software. PVM was 
developed at the Oak Ridge National Laboratories and the University of Tennessee in the 
late 1980's and early 1990's and is made available as shareware to the scientific 
community. It employs a message-passing form of distributed processing in which data is 
exchanged in packets sent across the network and it is available for UNIX and MS- 
WINDOWS operating systems that use Transfer Control Protocol/Internet Protocol 
(TCP/IP) . 

PVM consists of essentially two parts: a background process that runs on each computer 
in the virtual machine (commonly known as a daemon process) and a library of callable C 
or FORTRAN routines. Each computer code, such as CATHENA, use; routines from this 
library to perform such tasks as starting a process on a remote computer node, 
transmitting and receiving data from other processes, checking the status of the virtual 
machine, and halting remote processes. A code will communicate with another code by 
first sending a message to its local PVM Daemon process (PVMD), this PVMD will then 
send the message to the PVMD on the appropriate remote computer, and that PVMD will 
pass the message onto the second code. All inter-computer communication is done 
through the PVMDs using TCP/IP socket protocols. 

Once the remote process is started, the next steps are to establish what data are to be 
transferred, the order in which they are to be sent and received, and the frequency of 
transmissions. For the first version of the interface it was decided that this information 
would be contained in the input files of each code. This means that before commencing a 
simulation the user must verify that the lists between the two codes match so that data are 
sent and received in the appropriate order and at the appropriate frequency. The use of 
the PVM message passing routines provides a flexible method of transmitting the data. 
Each message would contain a set of data that would be structured according to what the 
user requests in the input file. The user would also specify in the input file the order in 
which the messages would be transmitted. 

The start-up and message-passing form of data transmission described above establishes 
the basic protocol for the CATHENA network interface. Any code that is to be coupled 
to CATHENA through this version of the interface must follow the same protocol and it 
must also include the applicable PVM routines. The PVM routines are also available for 
some UNIX scripting languages such as PERL so that driver programs could be written 
around some codes to give them access to the CATHENA interface. It should also be 
noted that codes can be networked on the same computer through this interface, although 
PVM and the appropriate networking software must be available. 



4. EXAMPLE 

To illustrate the capabilities of the CATHENA network interface, a power reduction 
transient in a CANDU 6 reactor was chosen as an example case. In this transient, the 
power was reduced from 100% to 77% full power at a rate of 0.5% per second and 
requires thermalhydraulic, reactor kinetics, and reactor controller models to simulate the 
event. CATHENA contains a reactor controller model for Point Lepreau (called 
LEPCON - LEPreau CONtoller) developed by New Brunswick Power [8] and a point 
neutron kinetics model so this event can be simulated by CATHENA itself. By removing 
the kinetics and controller models from CATHENA and making them into separate stand- 
alone executables, the event can also be simulated using these two codes coupled to 
CATHENA through the PVM network interface and the results can be directly compared 
to those produced by the single CATHENA simulation. . 

Figure 1 shows how the parallel virtual machine is set up for this example. The removed 
kinetics model is named POISIN (Point KINetics) and the controller model, LEPCON-S 
(LEPreau CONtroller Stand-alone). As mentioned in Section 3, the coupled calculations 
are done in a sequential manner and in Figure 2 the processing order for this simulation is 
presented. The number of data items in each message are shown over the arrows. No 
reduction in simulation time was expected from the coupled-code simulation versus the 
single CATHENA run because no parallelism in the computations was exploited. In fact 
a slight increase in simulation time was seen because of the overhead in network 
communications. 

Plots of the power transients from the two cases are shown in Figure 3 and indicate a very 
good comparison between the two simulations. The slight deviations between the two 
transients are attributable to differences in numerical round-off. This example not only 
demonstrates that the PVM network interface works for multiple connections it also 
illustrates a way of verifying that it is functioning correctly. 

SUMMARY 

In this paper, the design and implementation of the PVM network interface for 
CATHENA were presented. It was shown that using the PVM software package, a 
network interface can be built to meet the requirements outlined in Section 2. A basic 
protocol was established that permits the coupling of CATHENA to many types of safety 
analysis codes. To demonstrate this, an example was provided in Section 4 in which a 
power reduction in a typical CANDU 6 reactor was modelled with reactor controller and 
reactor kinetics codes connected to CATHENA through the PVM interface. Future 
investigations will include coupling CATHENA to a multi-dimensional reactor kinetics 
code and other reactor controller models. 
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