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Abstract 

In Darlington reactors' SDS2 safety systems the self-powered NOP detectors of platinum-clad inconel type are used. Such 
detectors are characterized by underprompt, lagging response to neutron flux and therefore have to be dynamically compensated. 
The SDS2 NOP compensation is realized digitally, utilizing a backward finite difference numerical algorithm resident in the SDS2 
trip computers. Four dynamic first order lag terms, designated in this paper as C ,(t) , j = I ,  . . . 4 , are used for the dynamic 
compensation task, with time constants T, ranging from 30 sec up to 300,000 sec. The dynamic terms C,(t) are numerically 
computed by the compensation algorithm with sampling times AT, ranging correspondingly from 3 sec to 3000 sec. Because 
of the final difference form and the four different sampling times used in the algorithm, a dynamic numerical compensation error 
e(t) occurs. The error e(t) is evaluated by comparing the numerically compensated detector response DtCmp_alg(tJ with the 
"ideally" compensated detector response DtCmp (t) provided by continuous, analytical solution of compensator mathematical 
model. The continuous response DtCmp(t) is calculated analytically, separately for the bounded ramp-type and the step-type 
changes in neutronic power. The numerical compensation algorithm is emulated and the compensator's numerical error e(t) is 
calculated as 

e(t) = DtCmp (t) - DtCmp-alg (t) , t E [ 0, T ] ; 

utilizing a specially developed simulation code DACER. The resulting magnitudes and shape of the error transient e(t) strongly 
depend on the relative timing of the first simultaneous action of the four compensating terms C,  (t), with respect to the initiation 
moment to of the neutronic power change. 

Results of computations of the compensator numerical error e(t) calculated for a family of ramp and step-type transients in 
neutronic power are presented and discussed. The resulting bounds for the short term compensation error ( less than 300 sec 
duration time ) and the long term error (beyond 300 sec duration time) are shown. 

1. Introduction 

In Darlington reactors' SDS2 NOP safety systems the straight individually replacable (SIR), self-powered 
detectors (SPDs) of platinum-clad inconel type are used. The theory and properties of SPD detectors, 
including the platinum-clad inconel detectors' dynamic response, are described in Ref. 1. In general, the 
net current I from an SPD can be described as a sum of four distinct components 

where: = Current due to electrons resulting from (n,y,e) interactions in the detector, 
= Current due to electrons resulting from (n$) interactions, 

4y.e) 
= Current due to electrons resulting from (y,e) interactions (with gamma emitted from 

within the reactor core, external to the detector), 

I(e) 
= Current due to electrons resulting from (n,y,e), (n,p) and (y,e) interactions in the 

hardware immediately surrounding the detector. 

The I,,, component is negative and small. The polarity and magnitude of the remaining three components 
depend mainly on construction, materials and diameters of the detector's emitter, insulator and collector. 
The relative magnitudes of these four components determine the dynamic response of the detector. 

The NOP SDS2 platinum-clad inconel detectors are characterized by the undemromt, lagging response to 
neutron flux and therefore have to be dynamically compensated. As explained in Ref. 1, the dynamic 
response of these detectors to neutron flux can be approximated by a model with constant prompt term 



Fp and a combination of dynamic 1st-order lags representing the delayed response terms. In the Laplace 
transform form the underprompt detector response is described as 

where: Dt(s) = detector response, 
Fp = prompt response term (constant), 

d, = amplitude (gain) of the j" lag term, 

T, = time constant of the j" lag term, 
Flx(s) = neutron flux, 
k = number of delayed (lag) terms in detector model. 

The term in the brackets is the transfer function (see e.g. Ref.8) of the detector model. At the steady state, 
k 

with normalized reactor power we have in time domain Dt(t) = Rx(t) and therefore [ Fp + d ] = 1. The 
k ,=, j 

sum d is positive, and hence the prompt detector response Fp to a sudden change in neutron power 
J=1 J 

is initially smaller in magnitude (underprompt) than the actual change in neutron power. In Darlington 
SDS2-NOP Pt-clad Inconel detectors the "delayed" part represents about 8% of the total neutron power. 
As a result, the detector's initial response to a sudden increase (or decrease) in neutronic power amounts 
to about 92% of the actual change in total neutronic power. Then, gradually, the lagged part of the 
response begins to occur, governed by the lag time constants 5, j = 1, . . . k and the discrepancy between 
the detector reading and the actual reactor power decreases until, near the steady state, the detector reading 
becomes equal to reactor power. ' 

To counteract the initial underprompt response and the transient discrepancy between the detector reading 
and the actual reactor power, the detector responses are dynamically compensated. The Laplace transform 
model of the compensator is given as 

where: DtCmp(s) = compensated NOP detector response, 

4 = magnitude of the fh compensating lag component, 

Tj = time constant of the jth compensating lag component, 
Dt(s) = (uncompensated) detector reading. 

4 

The compensator consists of the static term [ 1 + A ] which compensates for the initial underprompt part 
= I  

of the detector response, and the four dynamic compensating terms in the form of first order lags 
designated in this paper as C , (t) , j = I ,  . . . 4. The dynamic terms C , (t) compenste for the resulting 
transient discrepancy between the compensated detector reading and the actual reactor power. The time 
constants 5 range correspondingly from 30 sec up to 300,000 sec and the coefficients A,, j = I, . . . , 4  
have been chosen to compensate the detectors' signals and to ensure that the compensated detector 
response closely matches the fuel power. 

The SDS2 NOP compensation algorithm corresponding to differential representation of the Laplace 



transform model (3) is realized digitally in the SDS2 trip computers. 

2. Methodology of Analysis 

2.1 Notation, Definitions and Basic Assumptions 

At, = 

a,, A, = 
% , , A i j  = 

Â¥^ 
- - 

? j - - 
C, (t) = 
c, (to) = 

D tCmp (t) 

NOP detector index ; 
compensator lag term index ; 
Laplace transform variable (complex) .; 
time ; 
discrete time ; 
initial time moment ; 
time when the four compensating terms C-alg, are triggered into action simultaneously 
the f& time (after 6) ; 

for 

t̂ , - ty = relative time of the first simultaneous compensating action, evaluated with respect 
to to ; q aei is a random variable ; 
time increment, used in the compensator numerical algorithm for sequential calculation of the 
jtb lag term ; 
gain coefficient in compensator's j" lag term (for generic, unspecified detector) ; 
gain coefficient in compensator's j" lag term (for the i" detector) ; 
time constant in compensator's j lag term (for generic, unspecified detector) ; 
time constant in compensator's j" lag term (for the i" detector) ; 
output of the compensator's j lag term (for generic, unspecified detector) ; 
C. = initial condition for C, (t) ; 
4 

C(t), is a sum of all compensating lag terms (for a generic detector) ; 
j = l  

NOP detector uncompensated reading (for a generic detector) ; 
NOP detector uncompensated reading (for the i" detector) ; 

= compensated detector "ideal" response (for a generic detector), based on exact mathematical 
time-domain representation of Eq.(8) ; 

DtCmp , (t) = compensated detector "ideal" response (for i" detector), based on exact mathematical time- 
domain representation of Eq.(8) ; 

QÃ£P(t = simulated changes in neutronic power, represented by uncompensated, "perfectly prompt" NOP 
detector reading, used as an input in calculated compensator action ; 

b,, , b, a, D = parameters of simulated variations in neutronic power ONp(t) ; 

1 for t > 0 ;  
0 for t s o ;  is the unit step function ; 

C-alg (t,;) = output of the compensator's j lag term (for generic, unspecified detector), calculated at 
discrete time ti. by the compensator numerical algorithm (5) ; 

C-alg , (to) = C-alg = initial condition for C-alg , (t ,J ; 
4 

SC-alg (tk) = $  ̂C_alg(tJ, sum of all compensating lag terms (for a generic detector), calculated at 
1=1 discrete time & by the compensator numerical algorithm (5) ; 

DtCmp_alg(tJ = compensated detector response (for a generic detector), calculated at discrete time 
by the SDS2 trip computer numerical algorithm (5) ; 



DtCmp-alg , (ti) = compensated detector response (for ih detector), calculated at discrete time t,, by the 
SDS2 trip computer numerical algorithm (5) ; 

DtCmp-alg , (t) = DtCmp-alg , (tb , for tk s t < tk+, , k = 0, 1, 2, . . . ; 

e, (t) & DtCmp , (t) - DtCmp-alg , (t) = error of the compensator algorithm, calculated for ith detector; 

e(t) A DtCmp (t) - DtCmp-alg (t) = error of the compensator algorithm, calculated for a generic 
detector; 

STE(t) A e (t), 0 s t s 300 sec = short term error of the compensator algorithm ; 

LTE(t) A E (t), t > 300 sec = long term error of the compensator algorithm. 

Basic Assum~tions : The following basic assumptions have been used: 

(AI): Uncompensated detector readings Dt, (t) are simulated in this study as "ideal" in the sense that they 
exactly (without any delay) represent postulated changes in neutronic power ONp (t), i.e. 
Dti(t) = @-(t) , i = 1, 2 , .  . . 17, for t  2 0. 

(A2): Compensated individual detectors' responses to a postulated change in neutronic power QNp(t), 
calculated by the numerical compensator algorithm (5) are identical because the same algorithm 
is used; therefore 

DtCmp-alg i (tk) = DtCmp-alg (ti.) , and e, (t) = e(t) ; for i = 1, 2, . . .17, 

(A3): At the start = 0 of a (simulated) compensator transient the reactor is at steady state with a 
specified power level. 

(A4): No SDS2 trip computer failure is taken into account in the analysis, i.e. it is assumed that the NOP 
compensation algorithm is executed properly, without interruptions by the computer, and the 
proper initial conditions C_algij (t, = 0) = Ci: are used. 

The assumption (A4) is justified by the objective of this analysis, which is to analyze and evaluate the 
compensation error introduced by the use of the numerical compensation algorithm alone, instead of the 
continuous operational amplifier-type representation. Also, in the safety analysis, dual process failures 
are considered but no simultaneous trip computer failure is postulated, because the probability of 
occurrence of such a multiple-failure event is very small. 

As a consequence of assumptions (Al) and (A2), the foregoing analysis has been carried out for a single, 
generic SDS2 NOP detector and the results are applicable to the all 17 (per channel) SDS2 detectors. 

2.2 Differential Model of the SDS2 NOP Dynamic Compensator 

The compensator Laplace transform model described by Eq.(3) is refered to as the mathematical 
reference model of the compensator. 

The values of the compensator parameters used in the reference model are summerized in Table 1 below. 
The same values of gain coefficients A, and time constants T, , j - 1, . . . ,4 are used i n  both the model's 
analytical solution and in the compensator numerical algorithm used in SDS2 trip computers. The last 
column of Table 1 gives the sampling times At, used in the compensator numerical algorithm for periodic 
sampling of the individual compensating lag term loops. Observe that the sum of individual gains is 
equal to A, + . . . + A4 = 0.066. 



Table 1. Parameters of SDS2-NOP Detector Compensator 

Lag term gain coefficient A, Time constant T, I Corresponding sampling time At, 

It implies that the compensated response to a unit step-type change in neutronic power @&), from 0% 
to 100% FP, read by the "ideal" detector, such that Dt (t) = Qurft), will initially jump from 0% to 106.6% 
PP. After that, it will gradually decrease back to 100% FP, as the exponential responses of the individual 

4 

compensating lag terms begin to subtract from the initial response term (1 + A) .  The block diagram 
of the compensator reference model (3) is shown in Fig.1 below. - 1  ' 

A, = 0.012 

A, = 0.016 

A3 = 0.030 

A4 = 0.008 

L .--------- * -.------ * -----: 

Dynamic Compensator 

Figure 1. Block Diagram of the SDS2 NOP Detector Compensator Model 

T, = 30 sec 

T, = 300 sec 

T, = 2400 sec 

T~ = 300,000 sec 

At, = 3 sec 

At, = 30 sec 

A t3 = 300 sec 

At,, = 3000 sec 



In the time-domain the compensator's Laplace transform model (3) is represented, (see e.g. Ref.9), by the 
following system (4) of first order linear differential equations, referred to in the text as the compensator's 
differential model. 

0 C (t ) = C , to = 0 ,  j = 1, . . . ,4 are initial conditions ; 
I 0  

where: Dt(t) = QnpW is the neutronic power read by an "ideall'detector. 

The system (4) is representative for a generic SDS2 NOP detector, hence the detector index "i" is omitted. 
Solutions to the differential model (4) depend on the type of driving force Dt(t) and the initial conditions 
C,Â¡ j = 1, . . . . 4  . In particular, the lag term solutions C, (t), j = 1. . . . 4 ;  to the differential model (4) are 
uniquely defined by the initial conditions C:. We assume that the reactor is initially at steady state, at 
initial power level ha.  Assuming proper operation of the compensator algorithm, the initial conditions 
C,Â¡ j = 1, . . . ,4; must be set in such a way that the compensated detector response DtCmp(t) calculated 
by the model (4), matches exactly the reactor steady state power bn . 

Analytical solutions to model (4) for step-type and bounded ramp-type variations in neutronic power 
driving force eNp(t) are discussed in Section 2.4. 

2.3 Numerical Algorithm used in the SDS2 NOP Dynamic Compensator 

The SDS2 NOP numerical compensator's algorithm employs 1st order backward finite difference method 
and is of the form 

4 

DtCmp_algl( t,) = ( 1 + 5> ) Dl( t,) - SC_alg,( t,) ; 
j=1 

where: k = 1 , 2 ,  . . . ;  = 1, 2 , .  . . ,17; 

C_algij( to) = Ci: = initial conditions ; to = 0 ; 

The algorithm is resident in Darlington SDS2 trip computers. The individual discrete dynamic 
compensating terms C-alg , , (t) (corresponding to the C, (t) terms in the differential model.(4)) are 
periodically sampled with sampling times correspondingly equal to 

At, = 3 sec, At, = 30 sec, At, = 300 sec, A t4 = 3000 sec. 



The compensator algorithm (5) is described in the SDS2 Trip Computer Design Description (TCDD) 
document (Ref.4), its derivation is given in the Appendix A. 

2.4 Analytical Solutions to Compensator Differential Model 

Two different types of neutronic power eNp(t) variations are considered: a step-type change and a bounded 
ramp-type change. For each type of cup (t) change the analytical, continuous-time solution to the 
compensator differential model (4) is given below. 

Solution to Sten-me Changes in Neutronic Power 

Following assumption (A3), at the beginning of the analyzed transient (to = O), the reactor is assumed to 
be at steady state at power bn . The postulated step-type change in neutronic power cup (t) is defined as 

Qfip(t)= b for tie; J for bO; 
where: bo = initial reactor power level ; 

b = final reactor power level. 

Solution of the linear differential model (4) with the step-type driving force is a standard problem (see e.g. 
Refs.8 and 9). Utilizing the assumptions (Al) ,  (A3) and setting Dt (t) = (t) with neutronic power 
step-type change Qwp (t) specified by Eq.(6), the analytical solution to the differential compensator model 
(4) is 

t -- t -- 
C (t) = c,% TI + b - A - [ I  - e ' 1  , with Cj(0) = cÂ¡ A-b = initial conditions ; 

j I I 0  

The initial conditions C, (t=O) = C/ = A, bo , j = 1, . . 4 , imposed on the individual lag terms C, (t) assure 
that the compensated detector DtCmp(t) at t = b reads exactly the steady state initial reactor power bo , 
in agreement with the assumptions (A3) and (A4). 

The case with zero initial conditions is important for the occasion when the SDS2 trip computer is "cold" 
restarted after the computer failure. In such a scenario we have to assume that the computer memory has 
been lost and therefore the computer has no available information regarding the last (recorded) reactor 
power. Hence, during the cold restart the "proper" initial conditions C = A, bo , j = 1, . . . 4, are not 
available and the only reasonable approach is to use the zero conditions C .(0) = C = 0, j = 1, . . . 4 . 
Accordingly, the sum SC(0) = 0, and the compensated detector response becomes 

4 4 

DtCmp(0) = ( 1  + X A , ) - ~ ~ ( O )  - SC(0) = ( 1  + E A , ) . ~ ~  = 1.066b0; 
J-1 l=1 

It means, that the compensated detector response will initially exceed the initial reactor power by 6.6 % 
margin but such a bias is in the conservative direction. 



Solution to Bounded Ramp-we Chances in Neutronic Power 

As before, we utilize assumption (A3), i.e. at the beginning of the analyzed transient ( to= 0 ), the reactor 
is assumed to be at steady state power b. The bounded ramp-type change in neutronic power QNp(t) used 
in this analysis is defined as 

(a-t + b), for 0 s  k t  ; 
= D , for t 2 t ; 

where: b = initial reactor power level , 
a = rate of power increase , 
D = final reactor power level , 
t, = end time for the ramp driving force . 

The time-solution to the compensator differential model (4) for bounded ramp-type variations in neutronic 
power is given by a combination of exponential functions. Utilizing assumptions (Al) and (A3), setting 
Dt (t) = eNp(t), the analytical solution to the compensator differential model (4) for the bounded ramp- 
type change (8) in neutronic power eNp(t) is of the form 

I A , - ( b + a - [ t - v ( 1  - e  "11) - [ ~ , - b - ~ ; ] - e  ", for O i t d , ;  
I 

C,(t) = (t -t,) -- 
T 

A .D - [A;D - Cftl)].e I l for t a t  ; 
I 

Cj(0) = C =  Aj-b = initial conditions ; 

Mathematical derivation of the analytical solution (9) is given in the Appendix B. 

As before, the initial conditions C, (t=0) = C: = A, b , j = 1, . . - 4  , imposed on the ag terms C,  (t) assure 
that the compensated detector DtCmp(t) at t = 0 reads exactly the steady state initial reactor power b, 
in agreement with the assumptions (A3) and (A4). 

Discussion of the solution : An examination of the solution (9) indicates that boundary conditions and 
asyrnptotical trends of the solution are satisfied. In particular, observe the following properties of the 
solution: 

t t -- -- 
(a) At t = 0 the exponential terms e 'j equal to one, the term a-[ t - T -  ( 1 - e 'j ) ] becomes zero, 
the two remaining terms A,+b cancel and the dynamic compensating terms C, become equal to their initial 
conditions C, (t-0) = Cf , j = 1, . . .  4 . as they should. This property holds for any initial conditions C: 
Setting the initial conditions to C,Â = A, b . j = 1, . . .  4 ; as is the case with normal, uninterrupted 



operation of the trip computers, the sum of C, (t) terms becomes sc (t = o 1 = 2 A,+. At t = 0 the 
j =I 

reactor remains at its initial steady state b, hence the neutronic power is set to @up ( t=0 ) = b , and the 

t e  9 ( o A b and SC(t=O) in the expression for DtCmp(t) cancel. Hence, the compensated 

detector response becomes DtCmp( t-0) = cup (t=0 = b. It means that at the initial steady state the 
compensated detector reads exactly the steady state neutronic power, i.e. no compensation is required, as 
we expect. 
With the initial conditions C; = A,-b , the term [ A,-b - c:] = 0. In this case the rate of C, (t) increase 
(or decrease, depending on the sign of rate a) is, as shown in the Appendix B, describedby the relation 

dc, 
1. - -  

- = ~ , - a - [ 1  - e  'j] . Observe that at t = 0 the rate is - dcj = 0, as expected, see e.g. Ref.8. 
d t  d t  . 

The rate of change in the compensated detector response DtCmp(t) is shown in the Appendix B to be 

d - - 
- (~tcrnp) = a*[-Â A;e 'j ] , which implies that the initial rate (at t = 0) is increased by the 
d t  j -1 

amount of 2 A, = 0.066 , i.e. by 6.6%, when compared with the rate 'a' of the neutronic power transient 
j '1 

eNp(t). This effect of the initial rate increase is evident in the calculated bounded ramp-type transients 
showed in Section 3. 

(b) For t - m , (t) = D , see Eq.(8), and the terms C, (described by the solution part pertinent 
for t > t,) converge to their new steady states , C, (t) - A D , j = 1, . . , 4, regardless of the initial 

conditions c,Â . In the limit, the sum of C, (t), sc ( t) - D-2 A and DtCmp(t) - @up ( t i t, ) = D, i.e. 
J '1 

the compensated detector response approaches the new steady state reactor power D, as expected, and no 
further compensation action is required. 

(c) Intermediate times t < t, , with t large by comparison with the time constants t, . 
With the initial conditions C; = A,.b, for large time t , such that the exponential term [I - e 

dC 
t 

approaches one, the rate Ã‘' = A, a- [ 1 - e -5 ] - A;a ; i.e. the lag compensating t e r n  C, (t) ramp up 
dt 

(for positive 'a') with increasing rate, asymptotically approaching A,a (which is the power ramp rate 
multiplied by the lag's gain coefficient). However, the C, (t) transient is delayed in time with reference 
to the driving ern (t) ramp, with the delay approaching time constant T, , as it should be (see e.g. Ref.8 
and 9). 
For a ramp-type reduction in neutronic power Qua (t), the ramp rate A,-a is negative and the situation is 
reversed, but the outcoming transient is delayed as before, with the delay approaching time constant T, - 
For large t , but still before the point t, of power saturation, the sum of exponential components 

- - d 
A *  d e c r e s  and the rate - (DtCmp) approaches the driving rate 'a'. This effect is caused by 

3 -1 dt 

dynamic action of the lagging term SC(t) acting towards a gradual reduction in rate magnitude, but its 
effect on the compensated detector rate is less visible ( during the limited time span 0 <. t < t, ), due to 
large time constants T, and ~ 4 .  

The compensated detector responses DtCmp(t) described by Eqs.(7) and (9) are the exact mathematical 
solutions to the detector compensator model (3) and (4) for the postulated step-type and bounded ramp- 
type changes in neutronic power @yp (t). Therefore, they serve as a reference against which the 



compensated detector responses DtCmp-alg (tlJ calculated by the numerical algorithm (5) are compared 
with. 

2.5 Methodology and Objective of the Analysis 

As mentioned before, the SDS2 NOP detectors signal are dynamically compensated. The dynamic 
compensation is realized digitally in the SDS2 trip computer software, utilizing the numerical 
compensation algorithm (5). Because of the finite difference form of the algorithm (5) and the four 

. . .  different sampling times At , ,  j = 1, ,4 used in it, the resulting numerical compensation is computed 
with some error, relative to the "ideal" analytical compensator solution described by Eqs.(7) and (9). 

The error e (t) of the compensator algorithm is defined (for a generic detector) as the difference between 
the reference compensated response DtCmp(t) given by the analytical solution (7) or (9), and the 
numerically compensated detector response DtCmp-alg (t) . The numerical response DtCmp-alg is 
calculated at discrete sampling times t = t], by the numerical algorithm (5) as DtCmp-alg (ta . Between 
the sampling times the numerically compensated response remains constant, namely 

DtCmp-alg (t) = DtCmp-alg (tk) , for ti; s t < tk+i ; . . . . . . . . . . . .  (10) 
k =0,1,2,... 

Accordingly, the error of the numerical compensator algorithm is defined as 

e (t) A DtCmp (t) - DtCmp-alg (t), t e [ 0, T ] ; . . . . . . . . . . . . . . .  

The numerical error of the SDS2 compensator algorithm is broken into short and long terms, namely: 

Short term error STE(t) , defined as the compensator error e (t) , calculated over the first 
300 sec of the transient, i.e. STE(t) = 6 (t), 0 < t <; 300 sec; 

(and) 
Long term error LTE(t) , defined as the compensator error e (t) calculated over times equal to or 
greater than 300 sec, i.e. LTE(t) = e (t), t > 300 sec . 

Timing Effect of the Dynamic Compensating Term's Simultaneous Actions 

The timers of the four dynamic compensating terms C-alg , (tk) . j = 1, . .  4 trigger their individual 
compensating actions correspondingly at sampling times At, , j - 1, . . .  4. Because the timers are 
synchronized, every 3000 sec the four compensating terms C-alg , are triggered simultaneously. The 
moment tact of occurrence of the first simultaneous compensating action of the four terms, with respect 
to the initiation moment &-, of the neutronic power Qup (t) change, considerably affects the magnitude and 
sign of compensator's error transient, particularly for the large, step-type changes in neutronic power. This 
effect was analysed by simulating the two extreme scenarios : 

(1) The power change starts at moment t, = 0. Then, the four compensating 
sequentially, with the fastest term C-alg , triggered for the fust time at the moment 
the second term C-alg , triggered for the first time at ti = t, + At, = 30 sec, . . . ,  
C-alg , triggered for the first time at t4 = ty + At4 = 3000 sec (at time t4 the foil] 
simultaneously). In this scenario the two slowest compensating terms C-alg and 

terms are triggered 
t, = t,,+ At, = 3 sec, 
and the slowest term 
timers are triggered 
C-alg ,, are brought 

into action for the first time at the latest possible times after power change initiation. As a result, the 
compensator error decreases at a slower rate over the transient duration. 

(2) The power change starts at the moment t,, = 0 . but the four dynamic terms C-alg , . j = 1, . . .  4 ; are 
triggered (for the first time) to act simultaneousl~, immediately after the power transient initiation, namely 
at = t,, + At = 0.3 sec, where At = 0.3 sec is the fastest sampling time, used to calculate the points of 
the analytical solution (ten times shorter than the sampling time At, of the fastest compensating term 



C a l g  , ). In this case the multiplicative coefficients A tj , j = 1, . . 4 in the numerical cornpewtor 
T, +At, 

algorithm (5) are initially, at t = L,, much larger than they were designed to be for the backward finite 
difference algorithm, particularly for the slower compensating terms, with larger At, . As a result, the 
numerical compensator initially significantly "overcompensates" the detector response. The sign of the 
resulting error is reversed when compared with the error in the identical case analyzed under the scenario 
(1) and the initial magnitude of the error is larger. Also, the error transient decreases faster with time than 
in the first scenario. In the next successive discrete moments, just after tat, the algorithm returns to the 
sequential mode of operation, and for the remaining part of the transient the proper values of the 
multiplicative coefficients are used. 

The time taÃ of that fast simultaneous compensating action by the four dynamic terms varies randomly 
with respect to the initiation moment to. Therefore, the action timing difference qag = ( tact - b) which 
describes the relative timing of the first simultaneous compensating action, is a random variable. The 
variable qact is bounded, i.e. for the SDS2 numerical compensator 0 2 qact < 3000 sec and therefore is 
described by a truncated probability distribution. It follows that, depending on the actual value of the 
variable qaÃ£ the magnitude of the resulting compensator error e (t) varies randomly but is also bounded 
in magnitude. 

Objective of the Analysis : The objective of the analysis is to simulate the error transients e(t) of the 
detector compensation algorithm (5) ,  for a specified family of neutronic power transients. Then, analyze 
the calculated error transients and evaluate their maximum short and long term errors max [STE(t)] and 
max [LTE(t)], while taking into account the timing effects of the simultaneous correcting actions of the 
compensating lag terms C-alg , . 
A simulation code DACER (Eetector Algorithmic Compensation Error) was used in the calculations. It 
has been specifically developed for the purpose of analysis of SDS2-NOP numerical compensation and 
utilizes MATLAB software (see Ref.12). The code emulates the digital compensator algorithm (5) to yield 
the numerically compensated generic detector response DtCmp-alg (t). The analytical solutions (7) and 
(9) are used for the calculation of the compensated detector "ideal" response DtCmp (t) for the specified 
family of neutronic power transients @up (t). The code then calculates the compensator's error transients 
e(t) as defined by Eq.(ll). It also enables to directly evaluate the timing effects of the simultaneous 
correcting actions by the compensating dynamic terms C_alg,(t). 

The potential effect of the SDS2 NOP trip logic on the numerical compensator error is beyond the scope 
of this analysis. List of neutronic power transients used for the detailed error analysis is given in the next 
section. 

3. Computational Results 

The family of neutronic power transients sup (t) specifically requested and agreed upon with Darlington 
ND Nuclear Safety Department for detailed error analysis, consequently simulated by the DACER code 
and analysed, is given below : 

(a) ramp-type power increase from 0% to 126% FP in one hour; 
(b) ramp-type power increase from 0% to 126% FP in 12 hours; 
(c) ramp-type power reduction from 100% FP to 60% FP in 0.5 hour; 
(c-bis) ramp-type neutronic power reduction from 100% FP to 60% FP in 0.5 hour with 

zero initial conditions in dynamic compensating terms; 
(d) ramp-type power reduction from 100% FP to 60% FP in 6 hours; 



(e) ramp-type power increase from 0% to 126% FP in one hour, with the 
four compensator timers set to trigger their first compensating action 
simultaneously, just after the power ramp initiation; 

(0 step-type power increase from 0% to 126% FP; 
(g) step-type power increase from 0% to 126% FP, with the four compensator 

timers set to trigger their first compensating action simultaneously, just after the 
power step initiation; 

(h) step-type power reduction from 100% FP to 60% PP. 
(i) step-type power reduction from 100% FP to 60% FP, with the four compensator 

timers set to trigger their first compensating action simultaneously, just after the 
initiation of the power step reduction. 

The Cases (a),(b),(c) ,(c-bis),(d),(f) and (h) were simulated assuming the sequential mode of operation. The 
remaining Cases (e),(g) and (i) were simulated with the four dynamic terms C_alg,(t) initiating their first 
simultaneous compensating actions immediately after the power step initiation. Simulation results for the 
Cases (a),(b),(f) and (g) are briefly described below, in Sections 3.1, 3.2 and 3.3. Detailed description and 
analysis of the simulation results for all the listed cases is given in Ref.5. 

3.1 Bounded Ramp-type Changes in Neutronic Power 

Case (a): Ramp-type Neutronic Power Increase from 0%FP to 126 %FP in One Hour. 

The parameters of the bounded cup (t) ramp in Case (a) are: 

= 0 = ramp initial time ; t, = 3600 sec = ramp end ( cut-off ) time ; 
b = 0 FP = initial power level ; D = 1.26 FP = final (bounding) power level ; 
a = 1.26 FP/hr = 3.50 x 10 '' FP/sec = ramp rate ; 
T = 10,000 sec = duration of the simulation transient , 

Results of the simulation are presented in Figs. 2, 3, 4 and 5. The dashed lines in Fig.2 represent the 
postulated bounded ramp-type change in neutronic power Ow (t), calculated following the relation (8). 
The analytical response DtCmp(t) of the compensated generic detector, calculated following the analytical 
solution (9) is shown in the upper-half of Fig.2, marked by the solid line. In the lower-half of Fig.2 the 
numerically compensated detector response DtCmp_alg(t), calculated by the numerical compensation 
algorithm (5) is shown in the solid line. The transients in the upper and lower halves of Fig.2 look the 
same, which implies that the numerical compensation algorithm (5) provides good representation of the 
"ideal" analytical solution (9). 

The transient of the compensator's numerical algorithm error ~ ( t ) ,  defined by relation (1 1) as a difference 
between DtCmp(t) and DtCmp_alg(t) is depicted in Fig.3 using a magnified scale, in fraction of %FP. 
For most of the transient the calculated numerical error e(t) is negative. It implies, that for cases with 
power increase the generic detector signal compensated by the numerical algorithm (5) is larger than its 
equivalent "ideal" analytical compensation solution, and therefore is conservative. During the whole 
transient the error e(t) remains within the allowable long-term tolerance envelope of Â 0.25 %FP. At 3600 
sec , which is actually the cut-off time of the power ramp, the error reaches its largest (negative) value 
of - 0.2 %FP. After that the the error oscillations decrease exponentially. 

Transients of the individual dynamic compensating terms C-alg, (t), j-1, . . . 4 ,  and their corresponding 
sum SC_alg(t), calculated by the numerical compensation algorithm (5) are shown correspondingly in the 
upper and lower-halves of Fig.4. They are sampled periodically at times ti., k = 0, 1,2, . . . and remain 
constant between the sampling times. For comparison, the "ideal" transients of the continuous dynamic 
compensating terms CJt), j-1, . . . 4  and their sum SC(t), calculated using the analytical solution (9) are 
shown in Fig.5. 
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Figure 2 . Bounded Ramp from 0 %FP to 126 %FP in 1 hours. 





SDS2 Algorithm - Individual Lagged Ramp Terms: C1, C2, C3 and C4 

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 
time (sec) 

SDS2 Algorithm - Sum of Lagged Ramp Terms 

I I I 1 I I 1 I 1 J 

I 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 
time (sec) 

Figure 4. Bounded Ramp from 0 %FP to 126 %FP in 1 hours. 
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Figure 5. Bounded Ramp from 0 %FP to 126 %FP in 1 hours. 



. . . .  Between the (large) sampling moments t, = 300 s, 600 s, 900 s, the error ~ ( t )  is growing in almost 
ramp-type fashion (in negative direction), due to the continuous increase of the analytically calculated 
compensated response DtCmp (t). At each sampling moment t.,, the error is momentarily reduced to a 
small value by the correcting action of the numerically calculated third compensating term C-alg . As 
a result, the error transient depicted in Fig3 shows a series of spikes with increasing amplitudes (up to 
the ramp cut-off time t, = 3600 sec). The spikes occur periodically every 300 sec, which is the sampling 
time At3 of the third dynamic compensating term C-alg 3 .  Because the gain coefficient A3 = 0.03 of that 

term amounts to almost half of 2 A, = 0. 066 , the effect of the corrections introduced by the third 
j =l 

compensating term is much larger than the corrections introduced by the fast first two terms C-alg , and 
C-alg , . Also, due to its large time constant x, = 2400 sec and the large sampling time A t3 = 300 sec, the 
compensating action of the third term spreads over the long time duration. As a result, the third 
numerical dynamic term C_alg3 (ti.) is the dominant contributor to. the error e(t). 

The first two dynamic terms C-alg, and C-alg2 affect the overall error transient in a similar fashion, but 
less significantly. The effect of the fourth compensating term C.alg4 is barely noticeable within the 
10,000 second transient duration time, because of its huge time constant of = 300,000 sec, very large 
sampling time At, = 3000 sec and the smallest gain coefficient A, = 0.008. The influence of this term 
can be observed only very far into the transient, near the steady state. 

To better illustrate the contributing effect of the two fastest dynamic compensating terms C a l g ,  and 
C-alg, , the first 350 seconds of the compensator error e(t) transient is shown separately in Fig.6, in a 
magnified scale. The individual action of the first dynamic term C-alg, is manifested by the small, 
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Figure 6. Bounded Ramp from 0 %FP to 126 %FP In 1 hours. 





periodical "seesaw-type" line with At ,  = 3 sec sampling time. It is superimposed on the larger seesaw-type 
transient with At2 = 30 sec sampling time, which represents the impact of the second dynamic 
compensating term Calg, . The seesaw-type oscillatory behavior is caused by the fact that the 
compensation error e(t) is calculated as a difference between the continuously changing analytical sum 
SC(t) and the periodically sampled numerical term SC_alg(t). At 300 sec time the third dynamic term 
C-alg , comes into action and, as described before, its effect its dominant by comparison with the impact 
of the first two terms. 

Case (b): Ramp-type Neutronic Power Increase from 0% FP to 126 % FP in 12 Hours. 

The parameters of the bounded @up (t) ramp in Case (b) are: 

= 0 = ramp initial time; t, = 12 hrs = ramp end (cut-off) time ; 
b = 0 FP = initial power level ; D = 1.26 FP = final (bounding) power level ; 
a = 0.105 FP/hr = 2.917 x 10-5FP/sec = ramp rate ; 
T = 24 hrs = duration of the simulation transient. 

This is a much slower transient than in Case (a). For brief, only the compensator numerical algorithm's 
error e(t) is plotted in Fig.7 above, in fraction of %IT, using a magnified scale. Up to the cut-off power 
ramp time t, = 12 hrs the calculated error e(t) is negative, which implies (as before) that for cases with 
power increase the numerically compensated detector signal is larger than its corresponding "ideal" 
analytical solution, and hence is conservative. For time t > t, the error diminishes and oscillates about 
0 %FP, with a very small amplitude and a period of 3000 sec, equal to the sampling time At4 of the 
slowest dynamic compensating term C-alg with the time constant of t, = 300,000 sec. In a very long 
transient like this one, the 4'1' dynamic term has enough time to become effective and becomes a 
significant contributor to the compensator dynamical error e(t). 
The largest (in magnitude) compensation error is very small, of about -0.032 %FP and occurs just before 
the power cut-off time t, . 

3.2 Step-type Changes in Neutronic Power 

Case (f): Step-type Increase in Neutronic Power from 0% FP to 126 %FP. 

This is the most critical of the analyzed cases, because a very large, "instantaneous" jump in neutronic 
power, from 0 %FP to the SDS2 NOP trip setpoint is postulated. 

The parameters of the step increase in neutronic power (t) in Case (f) are: 

to = 0 = initial time ; T = 5400 sec = duration of the simulation transient ; 
bn = 0 FP = initial power level ; b = 1.26 FP = final power level. 

Main results simulation are presented in Figs. 8, 9 and 10. The "ideal" response of the compensated 
detector DtCmp(t) , calculated using the analytical representation (7), is shown in the upper-half of Fig.8, 
marked by a solid line. The numerically compensated detector response DtCmp_alg(t) , calculated using 
the numerical algorithm (5 ) ,  is presented in the lower-half of Fig.8, plotted by a solid line. Dashed lines 
depict the postulated step-type increase in neutronic power Qup . 

In this case the reactor is initially at steady state, at zero power level bo = 0 FP. Accordingly, the initial 
conditions imposed on the dynamic compensating terms C, and C-alg, are equal to zero, i.e. 

C (0) = c,Â = A;b0 = 0 FP ; and C-alg, (0) = c,Â = A,-b,  = 0 FP ; (12 

j= l ,  . .  . 4  j=l, . .  . 4  



as well as their corresponding sums SC-alg(0) = 0 FP, SC(0) = 0 FP. Hence, the initial compensated 
detector responses are also zero, since (see Eq.(7) and Eq.(5)) 

~ t ~ r n p ( O ) = [ l + ~ A ~ ] - ~ ~ l O ) = [ l + ~ A ~ ] - b ~ = 0 F P ;  j -1 j -1 and 

Immediately after the power step increase, at t = O* the dynamic terms C, , C-alg, , j = 1, . . . , 4  and their 
sums SC and SC-alg are still equal to zero, but the neutronic power and the uncompensated detector 
(ideal) reading momentarily increase to QNp (0') = b = 1.26 FP, Dt(0') = b = 1.26 FP. 

Accordingly, the compensated detector responses DtCrnp and DtCmp-alg jump to 1.34 FP level, because 

and 

This step-type jump is clearly visible in both parts of Fig.8. For t > 0' the both responses exponentially 
approach the 1.26 FP level, which is the reactor new steady state. 

The transient of the compensator's numerical algorithm error e(t) is depicted in Fig.9 as a fraction of 
%FP. For the whole transient the calculated error is strongly negative, from about - 0.1 %FP to below 
- 0.5 %FP, which implies that for rapid power increases the numerically compensated (by the trip 
computer) detector signal is conservative. The amplitudes of the error oscillations decrease exponentially. 
As in previous cases, the dominant influence of the third dynamic compensating term C-alg, with the time 
constant T, = 2400sec and the largest gain coefficient A3 = 0.030 is evident. The effect of the slowest 
dynamic term C, (with the time constant T, = 300,000 sec and the sampling time At4 = 3000 sec) is 
impossible to observe in this relatively short simulation run. 

Transients of the individual dynamic compensating terms C-alg, (t) , j-1, . . , 4  , calculated using the 
numerical algorithm (5) are shown in the upper-half of Fig. 10. Discritization in the transient of the second 
fastest term C-alg , with the time constant t , = 300 sec and sampling time A t 2  = 30 sec is clearly visible, 
but the transient of the fastest term C-alg , (with At,  = 3 sec sampling) looks like a continuous line. The 
transient of the slowest term C a l g  , can be hardly noticed. It occurs at 3000 sec time and has a form of 
a very small step, due to the fact that at that time a substantial part of the error has already been 
compensated by the faster terms. 

Transient of the the sum SC_alg(t) of the four dynamic terms Calg, , j-1, . . , 4  ; is depicted in the lower- 
half of the same figure. 

For a better illustration of the error dynamics, the first 1000 sec of the error transient e(t) is shown in 
Fig.1 1. The effect of time discretization in the two fastest compensating terms C-alg, and C_alg2 , with 
time constants T ,  = 30 sec and T, = 300 sec is emphasized. 
The maximum (in magnitude) short term error (based on Fig. 11) is max [ STE(t) ] = - 0.56 % FP and 
occurs at 300 sec. The maximum long term error occurs at 600 sec and is max [ LTE(t) ] = - 0.47 % FP. 
More detailed description of the case is given in Ref.5. 
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Figure 1 0. Power Step from 0 %FP to 126 %FP at t0 = 0 
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Figure 11. Power Step from 0 %FP lo 126 %FP at 10 = 0 

3.3 Effect of Timing of the First Simultaneous Compensating Action 

The four dynamic compensating terms C-alg, , j = 1, . . - 4  are triggered periodically into action by the trip 
computer timers, with sampling times At, . j = 1, . . .  4 specified in Tablet. Because the timers are 
synchronized, every 3000 sec the four terms C-alg, are triggered simultaneously. As discussed in Section 
2.5, for the fast changes in neutronic power the moment tact of occurrence of the first simultaneous 
cornpensating action (FSCA) by the four terms, with respect to the initiation moment of the neutronic - 
power sup (t) change, considerably affects the magnitude and sign of compensator's error transient e(t). 

For ramp-type changes in neutronic power the effect of timing of the FSCA on the resulting numerical 
compensator error is negligable, even for cases with the fastest ramp rates of 126 %FP/ hr , as in the Case 
(a). Such a rate is relatively slow, when compared with the abrupt, step-type changes. Therefore, at time 
tact when the FSCA occurrs (in our simulations tact = 0.3 sec), the initial increase in detector reading 
Dt, (ti.) (relative to its initial steady state value at = 0) is very small. 

Accordingly, the driving terms - A i j - ~ t L t t k ) ,  j =I, . . A .  inEqs.(5)areevensmaller(bytwo 
=i< + At, 

orders of magnitude, or more), particularly for the two slowest terms C_alg3 and C_alg4, with the 
largest time constants of x3  = 2400 sec and q = 300,000 sec. In the next (smallest) sampling time 
t, = t_ + At,  = 3.3 sec only the fastest term C-alg , is triggered into action (for the second time) and then 
recomputed every 3 sec. From that time on, i.e. for t 2 t, the system acts exactly as described in the 
Case (a). Namely, the four compensating terms are triggered sequentially, with the second term C-alg 
calculated (second time) at t, = tÃ£ + At-, = 30.3 sec and then every 30 sec, etc. At time t4 the four 
dynamic terms act again simultaneously and the whole cycle repeats periodically with 3000 sec period. 
As a result, and the transients of the overall compensator actions and the resulting error transients are 



practically identical to 
in Ref.5. 

For step-type changes 

2 5 

those shown in Case (a). Detailed simulation results for the ramp cases are given 

in neutronic power the effect of FSCA timing on the compensator numerical error 
is discussed below for the most critical case of step-type power increase from 0% to 126% FP. 

Case (g): Step-type Increase in Neutronic Power from 0% FP to 126 %FP, with the Four 
Compensator Timers Set to Trigger their FSCA just after the Power Step Initiation. 

Parameters of the step increase in neutronic power QW (t) in this case are the same as those in Case (0, 
namely: 

= 0 = initial time ; T = 5400 sec = duration of the simulation transient ; 
bo = 0 FP = initial power level ; b = 1.26 FP = final power level. 

The reactor is initially at steady state, at zero power level bn = 0 FP. Accordingly, the initial conditions 
imposed on the dynamic compensating terms C, and C-alg are set to zero, and the resulting compensated 
detector initial responses are also zero. 

At the initial moment fc, the detector reading Dt (Q undergoes an instantaneous increase from 0 %FP all 
the way up to the SDS2 NOP trip setpoint of 126 %FP. However, in contrast to Case (f), the four 
compensator timers are set to trigger their FSCA immediately after the initiation of the power step, that 
is at the first action time tXt = t, + At = 0.3 sec. 

At time tct the four driving terms j - ~ , - ~ t ( t ~ ) ,  j = 1 , . . , 4 ;  inthenumericalalgorithm(5) 
ĵ + A t j  

act simultaneously, with the sampling time intervals At, set permanently to values given in Table 1, 
Section 2.2, rather than to be set to 0.3 sec (only for this f i r t  time moment) to ensure the proper operation 
of the backward finite difference algorithm. Combined with the full momentary increase in Dt, , the 

resulting first simultaneous increase in the four driving terms A t j  - A ~ ~ - D ~ ~  ( t l )  is much larger than 
ĵ + A t j  

expected, as explained in Section 2.5. It yields a momentary excessive increase in the four compensating 
terms C-alg ij (b) , j = 1, . . , 4  ; and their sum SC-alg , (tÃ£ , much larger than in Case (a), producing a 
substantial initial compensating pulse. As a result, the numerical compensator initially overcompensates 
(in negative direction) the detector response, and the initial value of the error e(t) may even reverse its 
sign. From that time on, for t 2 tga the system acts exactly as described in Case (f), i.e. the four 
compensating terms are triggered sequentially, in the same manner as in the Case (f), as explained before. 

The simulated error transient e(t) for this case is shown in Fig.12, in units of fraction of %FP. The 
transients of the individual compensating terms C-alg ,, and their sum SC-alg , are displayed in Fig. 13. 
For better illustration, the first 1000sec of the error transient is shown in Fig.14. The effect of timing of 
the FSCA is clearly visible. More detailed simulation results are described in Ref.5. 

The largest short term error STE(t) is about thirty percent larger in magnitude than in Case (f) and the 
polarity of the error has been reversed from negative to positive, due to the overcompensating effect of 
FSCA, as explained before. The largest STE(t) occurs immediately after the transient initiation, triggered 
by the FSCA. The long-term error is smaller than in Case (f). 

The maximum (in magnitude) short and long-term errors, based on transients from Figs.14 and 12 are 
correspondingly 

rnax [ STE(t) ] = 0.73 %FP , occurring at La = + At = 0.3 sec. into the transient; 
rnax [ LTE(t) ] 0.40 % FP, occurring at 300 sec into the transient. 
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Figure 14. Power Step from 0 %FP to 126 %FP at 10 = 0 

4. Conclusions 

Analysis of the NOP detector compensator error e(t) caused by the numerical compensation algorithm 
implemented in SDS2 trip computers was carried out for the specified family of neutronic power 
variations, as requested by and agreed upon with Darlington NGD. The family of neutronic power 
transients used in the analysis is specified at the beginning of Section 3. The main simulation results and 
the relevant analysis are described in Section 3. The results indicate that the most limiting are the cases 
with large step-type increase in neutronic power, from 0 %FP up to the SDS2-NOP trip setpoint of 126 
%FP, as expected. In particular, for the short-term error (up to 300 sec transient time) the most limiting 
is the Case (g), with the FSCA occurring immediately after the power step initiation. For the long-term 
error (above 300 sec time) the most limiting is the Case (0, with the sequential mode of action, when the 
FSCA of the four compensating terms occurs 3000 sec after the power step initiation. 

Cases with large step power reductions can be related to failures in the SDS2 system hardware. For 
example, in case of a sudden loss of the 120 V ac power supply to the NOP detector amplifiers, with 
reactor operating at fall power, the uncompensated detector signal (represented by Dt, in the compensation 
algorithm (5)) will momentarily drop from the 100 %FP level to 0 %FP. In such a scenario the resulting 
compensator short-term error transient will be bounded by the analysis carried out for Case (g), and the 
long-term error will be bounded by the analysis carried out for Case (0. The remaining cases with smaller 
power increase or power reduction yield smaller numerical error c(t). Cases with ramp power variations 
are aparently less limiting, but represent more realistic scenarios of variations in reactor power. 



The maximum (in magnitude) short and long-term errors, based on analysis of Cases (g) and (f) are: 

max [ STE(t) ] = 0.73 % FP , and max [ LTE(t) ] = - 0.47 % FP. 

As explained in Section 2.5 on Methodology, the relative timing of the FSCA by the four dynamic 
compensating terms varies randomly within a time range from 0 to 3000 sec, i.e. it is a truncated random 
variable with a uniform probability distribution. Hence, the resulting numerical compensator error e(t) 
is a random process, which realizations (trajectories) are constrained within a region (envelope) defined 
by the enlisted maximum short and long-term errors. 

The resulting short and long-term error limiting envelopes, bounding for all the cases specified in the 
list of the simulated power transients are : 

Short-term envelope = Â 0.75 % FP , defined for 0 s t s 300 sec; 
Long-term envelope = Â 0.50 % FP , defined for t > 300 sec. 
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APPENDIX A: Derivation of Numerical Algorithm Used in SDS2 NOP Detector 
Compensation 

The numerical compensation algorithm (5) is obtained by numerically integrating the differential equations 
in system (4) describing the dynamic terms C, (t) , j = 1, . . . 4  and timediscretizing the remaining algebraic 
equations. The first order backward Euler method is used, with discrete time t = t], and fixed time step 
A t  = tk-  t,', . 

The first order backward difference for the derivatives in differential eqs.(4) is defined (see e.g. Refs. lo), 
dx ( tk) x ( tk) - x ( t k )  

as = . The order of accuracy of the first order backward Euler method is the 
d t  A t  

same as that of the forward one. However, the backward method has two significant advantages (see 
Refs.10 and 1 I), namely: (*) it is unconditionally stable, and (**) positivity of solution is guaranteed when 
the solution is supposed to be positive. 

For simplicity, let's denote 

and Dt(tk) = Dt(k) , j = I, . . - 4  ; where Afc = sampling time for the j* lag term loop. 

Using the simplified notation, the backward difference of C, (t) becomes 

Substituting the backward difference (Al) into differential equations (4) we obtain 

Grouping the terms C, (k) on the LHS of the equation and multiplying both sides by we get 
(t, + A t j )  

Adding and subtracting C, (k-1) to the right-hand side of the equation, yields 

: , * C  (k-1) - (t, + A t )  *Cj  (k-1) 
C, (k)  = Cj (k-1) + + 

Tj + A t j  T, + A t j  

The two terms T, C, (k-1) cancel and we finally obtain 

A t ,  
C (k)  = C (k-1) + 

T, + A t j  [AjaDt (k) - cj ( k - 1 )  ; k = i ,  2. . . . ; 

which, after using fall notation and substituting C, (k) = C-alg i, (tJ , Dt(k) = Dt , (tJ , A, = A ,, and 
T, = T,, for the ih generic detector, becomes the first equation of the numerical algorithm (5). 

The initial conditions are set in the manner discussed in Section 2.4, namely C-alg,, (to) = c,," = A;,+ , 
to=() ;  j = l , . . ,  4; i = 1 , 2  , . . . ,  1 7 .  
Substituting discrete variables SC-alg i, (t& for SC(t) and DtCmp-alg (ti) for DtCmp(t) in the algebraic 
equations of model (4), we immediately obtain the last two equations of algorithm (5). 

The simulation results presented in Section 3 show that the compensated detector responses calculated 
using the numerical algorithm (5) closly resemble their corresponding analytical solutions. 



APPENDIX B: Derivation of Analytical Solution for Compensator Model with 
Bounded Ramp-type Changes in Neutronic Power 

Bounded ramp-type variations in neutronic power Qup (t) are specified by relation (8) as 

( a - t + b ) ,  fo r  O s t < t , ;  
A 

for t q ;  

where: b = 
a = 
D = 
t, = 

initial reactor power level , 
rate of power increase , 
final reactor power level , 
end time for the ramp driving force . 

one has to solve the set of linear differential equations in the To derive the analytical solution (9) ' 3 

compensator differential model (4). The equations describe dynamics of the lag terms C,, j = 1, . . . 4 ;  and 
are of form 

Cj (to) = C: are i n i t i a l  conds. , to = 0 ; 

where: D t ( t ) = Q u p ( t ) =  equation's driving force, t 2 0. 

The solution is found using a state-space solution (see e.g. Ref.8 or 9). For a general system of a linear, 

vector differential equation Ã = A-x ( t ) + f ( t ) , x ( to) = x , t s to ; the state solution is of form 

x ( t )  = @ ( t - t o ) - x ( t o )  + ] @ ( t - s ) - f  ( s )ds  , t a to ; ( B 2 )  
t o  

A- (t -to) 
where (t-to) = e is the system's state transition matrix, and A is a matrix of system coefficients 
adjacent to x(t). The system of equations (331) is decoupled and they all have identical form. Therefore, 
we can seek the solution of a single, scalar equation for a generic compensating term C, . Hence, the state 
transition matrix 3>(t - to), driving force f(t) and initial condition x(t,,) are scalars of the form 

Accordingly, a general solution for the generic term C, becomes 

First, lets find the solution C, (t) to an unbounded ramp Qnp(t). Substituting Qw(t) = a-t + b into 
Eq.(B3), the integral in the RHS becomes 

The first integral in the RHS is a convolution integral and can be integrated by parts, to get after 
(s--t) - - 

few transformations e '1 -s ds = T t - t j- t I - e I ]  . The second integral in the RHS 
0 



Substituting both relations back into Eq.(B3) we get 

and, after re-grouping we obtain the solution for the unbounded ramp eNp(t), in the form 
-- t - - 

t - t j - ( 1 - e  ' ) ) I )  - [ ~ ~ - b - ~ ^ ] - e  'I ; (B5)  

cjO = Cj (0) = initial condition, t 2 0 ; 

The solution (B5) is valid for any t i 0, and hence for the duration of the unbounded ramp 0 s t s tl . 

Now, let's find the solution for the bounded part of the eNp(t) ramp, which is the second part of our 
transient, with the time range t, s t s +a . We again utilize the state-space solution (B2), but now for 
t i t, , with the new initial condition defined at to = t, : x ( Q  = Cj(tl). This new initial condition is given 
by the solution (B5) at t = t, . Accordingly, we substitute now 

(t-tl) -- A. 
@ (t-to) = e  'j , f ( t )  = AD, x(t;,) = C, (t,) , to = tl = new i n i t i a l  t i m e  ; 

j 

in the state solution (B2), and it follows that the general solution for term C, in the time range 
t 2 tl becomes 

(t-t.1 -- (t-s) 1 e - ~  ds , t 2 tl ; ~ ( t ) = e  'I - c j ( t i ) + -  (B6 ) 
3 I, 

The integral in the RHS is calculated (in a similar manner as  before) to get 

(t-s) 

1 --I 
and the solution C,(t) for t i t, (the bounded part of the transient) becomes 

where C,(t,) is known from the solution (B5) at t = t, . Joining together solutions (B5) and (B7) we 
finally obtain the global solution C,(t), j = 1, . . . 4 ; for t i 0 in the form 

I t t -- -- 
~ ~ - { b  + a - [ t  - t j 0 ( l  -e '')I > - [ ~ , - b  - ~ j Â ¡ ] -  ' j ,  for  0 s t  < t l ;  

C ( t )  = (t-t.1 -- 
A, -D - [A;D - C, ( t ~  I-e *j , for t s t l  ; (B8) 

C, ( 0 )  = C, ( t  = 0 )  = C: = overall initial conditions, j = 1, . . . , 4  ; 

which is the main part of the analytical solution (9). The initial conditions in Eq.(9) have been set to 
C,Â = A, * b , as discussed in Section 2.4 , but the global solution is valid for any initial conditions C," . 

The remaining two algebraic relations in the analytical solution (9), describing SC(t) and DtCmp(t) are 
the same as in the compensator's differential model (4). 

d The rate of change of the analytical solution, Ã‘ ~tQiip (t) , is calculated as follows. 



dC, 
First, we calculate the rate - 

d t  
, which for the global solution is 

t t -- 
1 

- - 
= A , - a [ l - e  'j] + $b-c,!'].e 'j , f o r  Os t< t , ;  

and 

Using the initial conditions C: = A, b we get 
(t-tl) 

dC . dC , 2 = ~ . * a [ l - e  1 -- 
dt 

, f o r  ~ s t < t ~ ,  and - d t  = [ c ~ ( ~ , ) - A ~ - D ] - - - ~  3 ' 5  , f o r  t 2 t 1 ;  

dc, 
At t = 0, the rate - 

d t  
= 0 , which is consistent with the assumption (A3) in Section 2.1. 

dC . 
For very large t, and very large t, but such that t < t, , with t - +w we have 2 - A -  a, as expected. 

dt 
Accordingly, for 0 s t < t, , i.e. for the unbounded part of the ramp transient the rates of change of the 

sum SC(t) and the compensated detector response DtCmp(t), are -dsc = 2 A. a [ I - e - ] and 
dt ,=I 

d For very large t, , with t - +w , we have - ~ t ~ n p  1 t )  - a , i.e. the rate of the compensated detector 
d t  

response approaches the rate of neutronic power ramp. 

For t i t, , the rate of change of the sum SC(t) becomes 

Correspondingly, the rate of the compensated detector response DtCmp(t) becomes 

d It implies that with t -> +00 , - 
d t  

approaches zero, as it should. 
DtCmp (t) - 0 , i.e. the rate of the compensated detector response 
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