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ABSTRACT 

In order to reduce the computing costs of the time-dependent diffusion calculations without 
introducing unacceptable inaccuracies in the solution, a three level space-time kinetics procedure 
which is a combination of NET (Nodal Equivalence Theory) and QS (Quasi-Static method) is being 
developed. The time scales are divided into a three level hierarchy. On the smaller time step, 
the point kinetics equations are solved. At intermediate time steps, a coarse representation of the 
reactor core is solved using NET Finally, full fine mesh calculation are performed over a large 
time scale This scheme appears to have the potential of simulating demanding transients with 
lower computational cost than conventional methods. Detailed investigation are being carried out 
to reproduce the total power and flux distribution in coarse level calculations. 

1. Introduction 

The accurate calculation of the power produced throughout a nuclear reactor core during transient 
operation is essential to both the design and safe operation of the reactor These transients cover a 
wide range of events from fuel depletion to catastrophic accident excursions Practically, the exten- 
sion of sophisticated numerical methods developed to solve transport equations to time-dependent 
problems which need thousands of calculations is very expensive from the point of the view of the 
computational resources required. Hence, time-dependent diffusion equations are normally consid- 
ered as the starting point for transient calculations. The time-dependent diffusion equations (also 
known as space-time kinetics equations) are' : 

a 
-Cn =13., [v%IT [a] - \nCn at (2) 

Despite the substantial increase in speed and memory of computer hardware in the recent years, the 
numerical solution of these equations is still far from being practical for regular calculations. The 
cost of the calculations is normally due to the three-dimensional nature of the power distribution 
through a large and often geometrically complicated core. Since for a CANDU reactor, a typical 
transient calculation requires about 10000 mesh points, the corresponding transient calculations are 

Notations are fairly standard. 



very time consuming. Consequently, developing efficient methods for treating both the spatial and 
temporal variables at a lower computational cost is of major importance. 

The spatial methods can be categorized as follows: direct methods, space-time factorization 
methods, and modal and synthesis methods. In direct methods such as finite difference and nodal 
methods, both space and time are directly discretized to produce a set of linear algebraic equations. 
Space-time factorization methods such as point kinetics, quasi-static methods are based on the 
factorization of the space and time dependent flux into two parts. One part is only time dependent 
and the other part is space- and weakly time-dependent. Finally, synthesis and modal methods 
are based on approximation of the flux by a linear combination of predetermined time-dependent 
spatial distributions. Time integration methods involve many methods such as 0-method, AD1 
(alternating direction imp1 icit) method, stiffness confinement method, and the family of Runge- 
Kutta methods. 

2. Nodal Equivalence Theory 

Equivalence theory[ 1 ] ,[2] was initially developed to solve the assembly homogenization problem. 
The assembly homogenization problem is to determine the equivalent diffusion theory parameters 
for each localized heterogeneous region (fuel pins, control rods, etc.) of a nuclear reactor during 
a static calculation. Equivalence theory can theoretically reproduce the heterogeneous solution of 
the nodes in a reactor. In equivalence theory, the major assumption is that the heterogeneous so- 
lution of the reactor calculation is known a priori. However, the goal of spatial homogenization is 
to be able to accurately predict the solution for the heterogeneous reactor without actually solving 
the heterogeneous problem. Therefore, by applying a set of approximations[3 ] , the heterogeneous 
solution of an assembly in static calculations can be reproduced with an acceptable degree of error. 
The basic idea of nodal equivalence theory is to use modified interface flux continuity condition 
(defined by discontinuity factors) in order to preserve the group surface currents, all group reaction 
rates and the reactor eigenvalue. For transient calculations, a complete derivation of NET would 
start with the time-dependent diffusion equation for a model of the heterogeneous reactor. In re- 
cent years some applications of nodal equivalence theory to time-dependent problems have been 
reported[4] , [5] ,[6] . However, in these works the discontinuity factors are obtained from a set of 
static calculations or approximated to allow for control rod motions or other material change. 

3. Description of the Method 

The basis of the method is the space-time factorization which is the decomposition of the time- 
dependent neutron flux into the product of two functions: an amplitude function that depends only 
on time and a shape function that depends on space and energy as well as time: 

[@ (r-, t )]  = [S' (r-, t )]  T ( t )  , (3) 
where S ( f ,  t )  is shape function and 7' ( t )  is amplitude function. Normally, it is considered that the 
shape function is weakly time dependent, and as result it does not need to be computed at every time 



step. By applying this relationship to time-dependent diffusion equations, two sets of equations can 
be obtained[7] : 

the point kinetics equations for amplitude function, 
and space-time equations for the shape function. 

In the classical improved quasi-static method [8] , the point kinetics equations are solved on a 
smaller time scale than the shape function. This is normally acceptable because the amplitude varies 
much faster than the shape function. In the cases where fast local shape distortions occur, the full 
core shape equations must be solved often during a transient. In this situation even the QS method 
becomes computationally expensive. In order to reduce the computational costs, the quasi-static 
shape function can be calculated in different node size levels where each node size level corresponds 
to a time step hierarchy. It is supposed that the shape function in the coarser node size varies faster 
than those of the finer nodes. Therefore the shape function in the coarser node should be calculated 
more often. By using nodal equivalence theory the preservation of the reactor eigenvalue, all group 
reaction rates and surface currents for each coarse mesh is guaranteed. Based on this approach 
and considering just one intermediate coarse level between the fine mesh calculation and the point 
kinetics, a three time step hierarchy has been proposed[9] (Figure 1 and 2). At the smallesttime step, 
the point kinetics equations are solved. The coarse mesh shape function is calculated by solving the 
multigroup diffusion equations over coarse regions. Finally, after many coarse mesh calculations, 
the full core fine mesh shape function is recalculated using the full multigroup diffusion equations. 
The solution of the fine mesh level is considered as the heterogeneous solution of the reactor and 
is used to update average cross sections, diffusion coefficients and discontinuity factors for coarse 
regions. 

4. Code Development 

As previously mentioned the method consists of three time steps: fine mesh, coarse mesh and point 
kinetics step. A new computer code named NDF which implements the aforementioned solution 
scheme is under development. This code consists of three major modules: fine and coarse level 
modules (including both spatial and ti me integration), and point kinetics equation solver (including 
time integration scheme). Furthermore, development of additional drivers for performing three- 
level quasi-static type of calculations is underway. 

4.1 fine step module 

In this module, by using an appropriate nodal method the heterogeneous or exact solution of a 
model of a real CANDU-6 reactor can be calculated. Later, reproducing this exact solution at a 
lower computational cost is the ultimate motivation behind of any nodal-coarse solution method. 
It has been proven that, among many available nodal methods, the mesh-centered finite difference 
method which is the lowest order of all nodal approximation, is sufficient for the study of CANDU 
reactors with one mesh per cell unit[10] . The higher order approximations in the nodal method 



would only produce a marginal improvement of the flux solution. In the MCFD method, the net 
surface currents are approximated by assuming that the flux varies linearly between the node cen- 
terpoint and the midpoint of any surface of the node. Eliminating the surface fluxes by enforcing 
continuity of the net current and flux across each interface leads to equations involving only the 
node-averaged fluxes. All diffusion parameters for the unit cells (fine level) are precalculated by 
using the transport code DRAGON[ll] . Furthermore, by taking advantage of a full representa- 
tion of all moving devices in the computer codes XSIMUL/DONJON[12] , NDF modules are able 
to perform complicated static and dynamic calculations related to control and safety devices in 
CANDU reactors. 

4.2 Coarse step module 

For coarse calculations, the Generalized Equivalence Theory(GET) formulation of NET is chosen 
because no iterative process is needed to calculate the discontinuity factors[2] . According to GET, 
discontinuity factors are defined as ratios of the heterogeneous fluxes and coarse mesh homoge- 
neous fluxes over coarse mesh interface: 

where fg<lI) J,K (ul, t )  and f&,J,J,K ( u~ - , -~ ,  t )  are discontinuity factors in the 14 direction. In the NDF 
coarse module, a mesh-centered finite difference scheme is chosen and applied over coarse regions 
of the reactor allowing discontinuity of surface fluxes for all the nodes. Once more, the mesh 
centered finite difference scheme is the fastest to calculate because of its simple nature, having 
only one unknown per node per energy group. Also, the coupling terms are not dependent on 
fluxes or currents, and, therefore, do not require any further iteration. By using this scheme on the 
coarse mesh, the discontinuity factors are defined by: 

(ui, t )  are the average nodal heterogeneous surface flux and 
current, and 5gu,i7 JIK ( t )  is the average nodal heterogeneous flux. Close examination of relation- 
ship (5) shows that the discontinuity factors depend only on the local spatial flux shape. Hence, 
we would expect that the discontinuity factors change slightly during mild transients. This would 
probably allow the use of constant discontinuity factors available from the initial criticality calcu- 
lations. However, transients involving larger spatial flux changes (resulting perhaps, from control 
rod motions) are expected to require updating of the discontinuity factors. Also, it seems that up- 
dating discontinuity factors in the mesh-centered finite-difference method is of more importance 
than the other transverse-integrated nodal methods, since all information due to an important large 
spatial flux will be transferred to the coarse mesh level only by the average fluxes and surfaces. A 
potential advantage of the three level method is that one can adjust the time interval between the 
updating of the discontinuity factors by considering the nature of the transient, without introducing 



any nonlinear iteration procedure. For transients involving small spatial flux changes, the time in- 
terval between two fine mesh calculations can be chosen very long, while for a transient involving 
more important spatial changes, the updating must be carried out more frequently. 

4.3 Point kinetics module 

The major difficulty in this step comes from the stiffness of the point reactor kinetics equations. 
Thus, the generalized Runge-Kutta (GRK4A) method of the Kaps-Rentrop family[13] is used. 
Since the point kinetics parameters p (t), 0 (t),  A (t), and ,On (t) are time dependent and defined by 
weighted integrals of the flux and cross sections, these parameters must be updated at the end of 
each coarse mesh calculation. Since the number of coarse regions is small, these calculations are 
not time consuming. In this step the time dependent cross sections and time dependent flux rep- 
resent the effects of perturbations to the core during the transient. Since the coarse shape function 
is assumed to be constant between two coarse mesh calculations, the point kinetics parameters are 
not exact, and result in a certain amount of error being introduced into the solution. 

4.4 Boundary Condition Treatment 

The usual treatment of boundary conditions for the large nodes on the exterior boundary of the core 
is simply to fill in the empty nodes with extra reflector materials. However, by applying equiva- 
lence theory, boundary condition on the outside surfaces of the large nodes can be determined. By 
applying these equivalent boundary conditions in NDF', coarse mesh static diffusion calculations 
reproduce the fine mesh solution extremely well. 

4.5 Time integration method 

Any type of spatial approximation leads to an initial value problem for a coupled system of ordinary 
differential equations: 

d ^ I311 1̂2 

dt c - [  ] = [Hi, H22] [ E l *  (6) 

In order to manage stability and convergence of the time-dependent solution, the 0 finite difference 
scheme is one of the most well-established procedures. Therefore a full implementation of the 0- 
method on both the fine and coarse levels is prepared. In the present version of the NDF, the values 
of 8 can be different for flux and delayed neutron precursors, and are independent of space. 

5. Code Validation 

We present some validation results in both static and space-time kinetics calculations. 

5.1 Static Calculations 

As is expected, using the exact values of the equivalence parameters in the coarse mesh calculations 
leads to an almost perfect reproduction of the reactor eigenvalue and collapsed nodal average fluxes. 



A typical example is illustrated in Figure 3. A CANDU-6 reactor is modelled in 3D Cartesian 
geometry with (26 x 26 x 12) fine nodes and three coarse mesh configurations: (3 x 3 x 2) coarse 
nodes, (5 x 5 x 2) coarse nodes, and (10 x 10 x 2) coarse nodes. The adjuster bank #1 (including the 
center rod and the 4 comer rods) is set into 11 different position from 0% to 100% of full insertion. 
For each bank position a full fine calculation is performed. Applying the equivalence theory, the 
reactor eigenvalue as well as the coarse flux distribution are calculated. Comparison between the 
results shows that the reactor eigenvalue and average fluxes are extremely well predicted. However 
the maximum average flux error for the case with a (10 x 10 x 2) coarse mesh is almost 3 times 
less than those from (3 x 3 x 2) coarse mesh. 

Additional tests prove that using a set of reference values for the equivalence parameters causes 
relatively small errors in the reactor eigenvalue and average fluxes. In the following examples, the 
coarse mesh flux distributions are calculated using the reference values of the equivalence parame- 
ters. In the first example (Figure 4), the adjuster rod bank#l is set to a reference position (100% of 
insertion), then a full fine calculations is performed and this flux distribution is used to calculate 
the reference equivalence parameters (diffusion coefficients, cross sections, and discontinuity fac- 
tors). It can be observed that using these reference equivalence parameters for different positions 
of bank#l results in an almost negligible error in kfand average fluxes. 

In a typical CANDU-6 reactor, the liquid zone control system is designed to perform two main 
functions, first control of gross power output and second spatial control, i.e., the control of fludpower 
shape. This means that the zone control system is maintaining the desired global power level of 
the reactor by counteracting any power distortion or oscillation caused by a reactivity perturbation. 
In the next example (Figure 5), the effect of using "reference equivalence parameters" in static 
calculations for different levels of liquid zone controllers is studied. In this example all liquid zone 
controllers are set to a reference level. The fine flux distribution of the reference level is, then 
used to calculate the reference equivalence parameters (diffusion coefficients, cross sections, and 
discontinuity factors). It can be observed that using these reference equivalence parameters for 
different levels of liquid zone controllers results in small errors in kir and average fluxes. 

5.2 Dynamic calculations2 

A numerical scheme is stable if a small perturbation in boundary conditions or computer round-off 
errors do not lead to a significant changes in the solution. One way to study stability of a numerical 
scheme is to perform a Do Nothing transient. In this transient, the space and time integrators are 
initiated by a steady state solution. The solution advances in time with no perturbation. Evidently 
after many seconds no significant change in the solution must be observed. Figures(6) and (7) 
show the results of this kind of analysis. The coarse mesh discretisation consists of (5 x 5 x 4) 
nodes. Detailed studies demonstrate that much coarser nodes can lead to substantial errors in the 

All the transients are initiated by perturbing a steady-state situation. It is assumed in the moment that this 
perturbations occurs, the flux and precursors concentrations are at their steady-state values. These steady-state 
conditions arc obtained from an initial static calculation. Since, obtaining the static eigenvalue equal to unity is 
unlikely, the fission cross section values in both the diffusion and precursor equations are divided by the initial static 
eigenvalue. 



calculations. These errors are possibly due to classical iterative error in flux calculations which are 
amplified in homogenized cross sections in the large volume of the reactor. 

In the next example (Figures 8 and 9), the response of Reactor Regulating System (RRS) to 
a very substantial perturbation is simulated. In the initial steady-state conditions all the reactivity 
devices are set to the nominal positions. In the beginning of the reactor power transition, the bank#l 
(including the center rod and the 4 comer rods) is instantaneously extracted from the core It can be 
observed that the RRS is reasonably able to maintain the reactor power level at its initial reference 
value. Also using exact values of homogenization parameters leads to almost perfect reproduction 
of average fluxes and dynamic reactivity. 

6 .  Future work 

In the transient calculations it is not practical to perform fine mesh calculations uniquely to update 
the equivalence parameters. To deal with this problem different solutions have been considered. 
The first is to establish an equivalence parameter database. All devices are initially set to a refer- 
ence position (0% of insertion for control absorber rods, 100% of insertion for adjuster rods and 
50% of full level for liquid zone controllers). Each device is then moved and set to a new position 
independently. Based on the resulting fine mesh calculation, all equivalence parameters are then 
calculated and saved in the database. This database will hopefully permit fewer fine mesh cal- 
culations on long transients such as those involving Xenon. Ongoing tests show that when many 
devices are present in the core, simple superposition or linear interpolation of the tabulated values 
of cross sections and discontinuity factors result in large errors. These errors are mostly due to 
device interference effects that are not considered in the database generation. Another proposed 
solution is to define the correction terms which are the differences between the exact values of 
the equivalence parameters at the end of the fine mesh calculation and those which are tabulated. 
These correction terms would then be added to tabulated values of the equivalence parameters dur- 
ing the next fine time step. Another method is to consider the variation of the dynamic reactivity 
calculated in the point kinetics level as a criterion for switching between different time hierarchies. 
Further examination is ongoing to choose the best way of dealing with device interference effects. 
In the near future, the NDF three-level driver will permit complicated transient calculations with 
interesting application in safety analysis to be perfbmed The results will be compared to those of 
classical improved quasi-static and direct fine mesh solutions obtained from NDF. 
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Figure 1 : Fine and coarse representation of a CANDU reactor 
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Figure 2: Three time step hierarchy 
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Figure 3 : Static calculations using exact values of the equivalence parameters 
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Figure 4: Static calculations using reference equivalence parameters(Adjuster Bank #1) 
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Figure 5: Static calculations using reference equivalence parameters (Liquid Zone Controllers) 



Coarse Calculation 

\ - - 
Fine Calculation / 

0 500 1000 1500 2000 2500 

Time (Sec.) 

0 500 1000 1 500 2000 2500 

Time (Sec.) 

Figure 6: Do Nothing transient without SSR 
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Figure 7: Do Nothing transient with SRR 



100 200 300 400 500 

Time (Sec.) 

0 100 200 300 400 500 

Time (Sec.) 

Figure 8: Dynamic calculations using exact values of equivalence parameters 
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Figure 9: Dynamic reactivity (fine and coarse calculations) 


