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Abstract 

In this paper, we present recent developments based on a char- 
acteristics method applied for solving general 3D geometries in the 
case of isotropic boundary conditions. Assuming isotropic sources 
and scattering, this characteristics solver involves the calculation of 
the region-to-region angular flux by scanning the tracking file con- 
t aining the integration lines. The scalar flux is computed by collecting 
all mean angular fluxes in terms of the entering angular flux and the 
source of the region. At the boundary, the entering angular fluxes are 
linked to the emerging angular fluxes by isotropic albedos. The trans- 
port solution is similar to  the one obtained by the standard collision 
probability method. The main advantage of this treatment is to  get 
rid of collision probability matrices which have a dimensionality of the 
size of the square of the number of regions. For multigroup calcula- 
tions, the rebalancing scheme was enhanced to  take into account the 
external currents for any value of the albedos. Numerical comparisons 
are also presented in order to  show the accuracy of the characteristics 
method as compared to the standard collision probability treatment 
for 3D supercells in the lattice code DRAGON. Several calculations 
for the incremental cross sections of adjusters and liquid zone con- 
trollers show that the characteristics results are accurate for the usual 
supercell calculations in a CANDU reactor. 



Introduction 

The usual deterministic method in DRAGON[l] for solving the 3D neutron 
transport equation in supercell geometry is the collision probability tech- 
nique. In the EXCELT module, a sequential tracking file is constructed to 
cover all integration lines necessary to cover the 3D Cartesian domain; this 
is done by covering the supercell by arrays of parallel lines at several angles. 
The ASM module uses this tracking file to compute the collision, escape 
and transmission (corresponding to region- t o-region, region- to-surface and 
surface-to-surface respectively) probabilities for every energy group. These 
probability matrices are then algebraically reduced by eliminating the cur- 
rents for the multigroup system. In the newer EXCELL module, the tracking 
file does not have to be stored; this gives even faster solutions to 3D trans- 
port problems. As computing time and storage requirements increase as the 
square of the number of regions, the collision probability techniques can be- 
come prohibitive for large problems. However, we will now see that this is 
not the only way to solve these problems. 

The aim of the present work is to combine the best features of the above 
methods, without the need to use matrices. As in every method of character- 
istics (MOC), the differential form of the Boltzmann equation will be used.[2] 
This differential equation will then be solved after following the "characteris- 
tics" of the system, which correspond with the tracking lines. Characteristics 
multigroup solvers are used since the seventies to obtain accurate solutions 
for 2D lattice cell problems. The CACTUS code (now part of the WIMSE 
package) was one of the first flexible and well-organized software to perform 
lattice calculations.[3] CACTUS uses the cyclic tracking technique where a 
characteristics line is followed after mirror reflexions or periodic replications 
up to a point where it corns back to its origin. Using this technique, there 
is no need to take into account the value of the currents at the boundary. 
Based on similar ideas, a new module called MOCC was also developed in 
DRAGON to treat lattice cell problems with specular boundary conditions. 141 
This technology was found very accurate with respect to several benchmark 
problems, and we expect that similar accurate results could be obtained for 
3D problems in the coming years. Nevertheless, the treatment of specu- 
lar boundary conditions is slower than the usual simplified isotropic returns 
for surfaces at the external boundary. Recent attempts to use simplified 
boundary conditions between cells or at the external boundary have lead to 



various other well-known codes. In the recent versions of CASMO (CASMO- 
4), the standard transmission probability treatment has been replaced by a 
characteristics solver (named KRAM). [5] Using a similar formalism, another 
characteristics solver was also implemented in the GTRAN2 code. [6] The 
CRX code was also based on the MOC and can be used to solve rectangu- 
lar and hexagonal 2D lattices. [7] All these codes are still for 2D lattice cell 
calculations. 

In CANDU reactors, we need to be able to solve 3D supercell problems 
where solid reactivity mechanisms are placed perpendicularly to the fuel 
channels. The advantage of the MOC approach over the collision probability 
one is that it requires less memory for large problems with many regions. In 
the next section of this paper, we will describe the MOC method. Section 
3 will be devoted to the presentation of the multigroup iteration scheme. 
Numerical results are given in Section 4; these results include the study of 
incremental cross sections for stainless-steel adjuster rods and liquid zone 
controllers in a CANDU. It is shown that the results obtained by the new 
MCI module are consistent with the results of EXCELL. Conclusions and 
description of future work on that field are given in Section 5. An appendix 
is also provided in order to appreciate the various comparisons done with 
collision probabilities under various normalizations. 

2 The characteristics formalism 

2.1 generation of 3D tracks 

Assuming a finite domain V split into homogeneous regions, each region 
having a volume V,, the average (one-group) flux is given by: 

A characteristics line !? (tracking line) is determined by its orientation (solid 
angle (1) along with a reference starting point for the line. To cover the 
T domain, Monte Carlo codes will use random generators. In most deter- 
ministic codes, a quadrature set of solid angles is selected (in DRAGON, an 



EQn angular quadrature set sustained by uniform weights is currently used) 
and the starting point 6 is chosen by scanning the plane ~ f i  perpendicular 
to the selected direction 0;  the d4T element is then composed of a d 2 0  solid 
angle element times the corresponding plane element d 2 p .  In the above, the 
variable t refers to the local coordinates on the tracking line and the function 
Xi/, (. , .) is defined as 1 if the tracking line passes through the region j ,  and 0 
otherwise. 

For a chosen line 5? = (0, p) ,  the required local data is a collection of 
segment lengt-hs Lk and numbers Nk for each region encountered along the 
line. In order to later simplify the equations, these values will be ordered in 
the reverse travelling direction, ie {LK, LK-1, . . . LI, Ll,  L o }  Crossing points 
between regions and their corresponding angular fluxes are defined as: 

Fk+l = rife - L ~ ^  

where Fo is the exit point of line T from the domain V and fK+i the enter 
point. For each segment of the line, we define the integrated angular flux as: 

Using this definition, the integrated flux becomes: 

where 6 is the usual Kronecker symbol, and where the summation of k runs 
over all integers. All characteristic lines are accepted, but only the contri- 
butions of segments crossing region j are added together. For a fixed solid 
angle 6, we theoretically have that: 

Unfortunately, the estimated volumes yl(fi) do not generally agree with the 
true volumes V,. In deterministic codes, the segment lengths are usually 
renormalized to preserve the true volumes; this is done by multiplying Lie by 
the angular-dependent factor wl(ft). 



2.2 solving along characteristics 

From (3), one can remark that only averaged angular flux i f 'k  is needed to 
compute the region averaged flux So in this section, we will consider just 

one segment of a fixed tracking line T, the index k is dropped for simplifica- 
tion. 

Assuming an isotropic source of Q neut rons/cm3/sec, the one-group neu- 
tron transport equation may be writ ten: 

where 6 is a starting point, s the distance measured from Fo on the "charac- 
teristic" line which started from $0 and prolongate in the neutron direction 
0,  4 is the angular flux along this line and St is the transport-corrected total 
macroscopic cross section. 

For one line segment of length L and constant properties Et and Q, we 
may integrate equation (6) along the line and obtain[3]: 

where An = #(Fo, 6) is the inward value of angular flux at s = 0, doUt = 
{fa + LQ,, 0 )  the outward value at s = L. 

When Et # 0, the average value in the segment of angular flux along the 
line can be given by: 

where TL = StÂ£ and when Et = 0 : 

The outward flux Aout of one segment also serves as inward flux dim in the 
next segment. If the inward flux of the first segment of one line T is known, 
a segment-by-segment calculation will be done to compute the outward flux 
by (7) and the averaged flux by (8) or (9) according to the region propreties. 

For an iterative scheme, if only the isotropic reflection is considered for 
example, the outward flux of the domain will be summed at  the end of each 
inner iteration on every surface in order to obtain the outward current, and 
the last one, after being multiplied by will be used as inward current for the 
next inner iteration after multiplying by the albedo factor. 



3 Mult igroup iteration scheme 

To resolve a mult igroup critical problem with this characteristic method, one 
should need the characteristic integration lines, provided by the DRAGON 
tracking module EXCELT. A flat flux is supposed to start the iterative res- 
olution scheme. The last includes two levels of iteration: the inner loop and 
the outer loop(see Figure 1). As explained in the last section, each inner 
iteration corresponds with a sweep along all characteristics lines with the 
updated incoming currents of the last iteration. 

In the inner loop of a perfect reflection transport calculation, a rebalanc- 
ing scheme is usually performed in order to accelerate the inner iterations[12]. 
In our case, this rebalancing scheme is generalized to be suitable for any value 
of the albedo. For showing that,  one can rewrite the equation (6) in his con- 
ventional multigroup form: 

sg (3 = Ef'  (qqhg'(r-) + - 
Keff a' a' 

(10) 

One can supposed that the whole field V is divided into I regions l< in 
which the properties Ef , Ezg', and VS;: are constants, and the surface 9V into 
K sub-surfaces 
domain and all 

where 4, is the 

Sic. By integrating the above equation (10) over the whole 
directions, one obtains: 

region averaged scalar flux and F* is given by: 

1 
Fi = -I>$,&' 

Keff a' 

An average rebalancing factor ag is computed for each unconverged energy 
group such that the rebalanced fluxes ifif, and the rebalanced currents J^^, 
cut,k defined as: 



Tracking process 0 
Fluxes and currents init ialisat ion u 

Outer 

Figure 1: Iteration scheme for the MCI multigroup solver 



satisfy equation (11). In fact, the J9^^ is replaced by Pk J^,^ since the inward 
current, calculated in the last iteration, is "older" than the fluxes and the 
outward current which are obtained at the current iteration. So we obtain 
the following system: 

where g' denotes the unconverged energy groups and 9" the converged ones. 
The rebalanced fluxes and currents are then updated by an acceleration 

scheme before to be used in the next inner iteration. The inner loop will be 
ended when the inner convergence criteria are verified. 

When the inner loop end, for the effective multiplicative factor calculation 
(TYPE K), the Keff is computed and the outer convergence criteria are 
checked. The fission source will be updated by the new Keff and the new 
fluxes values, and then a new inner loop will be started. This outer iteration 
will continue until the outer criteria are verified. 

DRAGON supports also the bucking calculation (TYPE B), the bucking 
value is automatically searched after each inner loop in order to maintain 
the Keff to an imposed value which is usually the unit. The usual strategy 
used to obtained consistent reaction rates for diffusion models is to perform 
a critical buckling search. In that case, several options are possible: 

either use a homogeneous By or B1 model for leakage coefficients; 

the DB2 correction factor can be included either on the left side (PNL 
calculation) or on the right side (SIGS calculation) of the transport 
equation. 

The module MCI was developed to perform all these calculations, and can 
be used to generate nuclear properties: adirectional diffusion coefficients and 
macroscopic cross sections. We will now show that the results obtained 
by MCI are accurate with respect to the standard calculation scheme in 
DRAGON. 



4 Numerical results 

We consider now some 3D Gentilly-2 supercells. Each of these supercells 
is composed of two horizonal fuel bundles and one vertical adjuster with a 
symmetry factor 4. 

Tracking is performed by EXCELT module of the lattice code DRAGON 
with isotropic reflection option. A EQs angular quadrature and a 2.5 lines/cm2 
tracking density on the perpendicular plane were used. 

Transport equation is then solved by a critical buckling search with a first 
order leakage treatment B l .  Homogenization and condensation processes are 
then made with the resulting fluxes. Properties are condensed to 2 energy 
groups keeping the small up-scattering effect from the thermal to the fast 
group. 

Six types of stainless steel adjuster rods are considered and two calcula- 
tions have been performed for each adjuster rod type: one with the rod inside 
the supercell and one without the rod. The variations of the cross sections 
properties can be found in the Table 1-6. 

The collision probability matrices are usually normalized in such a way as 
to satisfy exactly the neutron conservation laws. The following normalization 
schemes (see Appendix) are available in DRAGON : 

Gelbard algorithm (GELB) : used by default in DRAGON, but which 
may drive to negative probabilities; 

0 Non-linear multiplicative algorithm (NONL) : more expensive, no neg- 
ative probabilities, usually more precise than Gelbard algorithm; 

Additive algorithm (HELI) : gives almost the same precision than 
NONL algorithm. 

Each supercell calculation in this paper are performed four times: one with 
the characteristics method, the three others with the collision probabilities 
method but associated with different normalization algorithm. Results ob- 
tained with NONL option serve as reference, and that with GELB and HELI 
option are compared with the reference just like that of the characteristics 
method. The relative error for a calculated value of the incremental cross- 
section, presented in the results tables, is defined as follows: 



In the Table 1-6, one can see that the HELI scheme gives almost the same 
results than the reference, and the characteristics method gives more precise 
results than to the GELB scheme (which is the default option in DRAGON 
code). It's particularly interesting to note that there seems to be a systematic 
offset of the GELB scheme for which range from 6% upto 10%; the 
offset pratically disapears when using either the HELI scheme or our new 
MCI module. 

We have also performed several calculations for the liquid zone controllers 
(ZCU) whose geometry is more complex. It depends on the number of feeder 
tubes and scavenge tubes in the various control zones of the reactor. Because 
of the different number of scavenge and feeder tubes in various zones of a 
reactor, three types of ZCU must be modelled: 

Type 10: with 1 small scavenge tubes and no feeder, 

Type 21: with 2 small scavenge tubes and 1 large feeder, 

Type 32: with 3 small scavenge tubes and 2 large feeder, 

A 6-region cylinderization was performed where the central and the fifth re- 
gions can be either voided or filled of water. For each type of the above ZCU, 
all these two cases are considered in the paper. On account of the complex- 
ity of the ZCU geometry, a EQs angular quadrature and a 10.0 lines/cm2 
tracking density on the perpendicular plane are necessary. The computing 
procedure is similar than that for the adjuster supercells. The results of the 
Table 7 (Filled of water) and of the Table 8 (Voided of water) show that 
the characteristics method is usually more accurate than the standard Pij 
method (DRAGON using the GELB normalization). One can also remark 
that,  for several types of A S ,  sometimes the GELB normalization presents 
better approximations, but the absolute value of that A S  in the concerned 
case is quite small (usually A S  values < 1 . 0 5 ) ,  this effect is therefore not sig- 
nificant. Consequently, the MCI solution is comparable to the best available 
results obtained with the collision probability modules of DRAGON. 



5 Conclusion and future work 

The isotropic characteristics method presented above offers accurate solu- 
tions to 3D transport problems in heterogeneous geometries. The module 
MCI involves much simpler programming than the standard collision proba- 
bility techniques used in DRAGON. Moreover, because there are no matrix 
treatment, the number of words necessary to  perform a 3D calculation is 
greatly reduced. With such a characteristics solver, the size of the transport 
problem can thus be quite larger than with CP techniques. This module will 
be particularly useful and reliable for doing supercell calculations in CANDU 
reactors. In its current state, the MCI module supports most of the options 
included in DRAGON and is therefore available to successfully perform both 
Keff and critical buckling searches. 

Some work is left to be done in order to get faster multigroup solutions. 
For relatively small problems with a limited number of regions, the CPU 
times observed with MCI are similar the ones of the EXCELL module (which 
is highly optimized). However, for larger problems, the MCI solution is 
slowed down by the current convergence. An obvious option would be to 
parallelize the multigroup treatment. Nevertheless, some research will be 
done to accelerate further the sequential version. In the coming years, a 
similar development will be done for 2D transport problems with isotropic 
boundary conditions, and the important aspect of rebuilding a self-shielding 
module also based on the characteristics methos will be considered. More- 
over, the possibility of generating directional diffusion coefficients could also 
be implemented in the extended MCI module. It is expected that this char- 
acteristics solver will supersede the use of collision probabilities once fully 
integrated and validated in DRAGON. 
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Incremental 1 Char. method HELI 
Err.(%) cross-section 1 results 

Table 1: Adjuster A S  values for BCAINT 

Increment a1 
cross-section results 

Table 2: Adjuster A S  values for BCAOUT 



Incremental 
cross-section 

BCBINT 

Char. method Char. 
results 1 Err.(%) 

AS: 

A% 

A S y  

A S g 2  

AS; 

AS: 

A E t r 2  

Table 3: Adjuster AX values fo 

1.31831E-03 

2.21216E-05 

1.19216E-03 

2.86756E-07 

5.43445E-04 

4.25977E-04 

1.04006E-04 

1.17180E-04 

Incremental 
cross-sect ion 

AS; 

AE; 
A E z l  

AStg2  

AS; 

AS: 
A E Z 1  

A E z 2  

0.0430 

0.0959 

0.0309 

0.0970 

0.0823 

0.1139 

0.1466 

-0.0334 

Table 4: Adjuster A S  values for BCCINT 

Char. method 
results 

1.06514E-03 

1.83062E-05 

9.53219E-04 

2.42814E-07 

4.61280E-04 

3.72622E-04 

9.36326E-05 

8.84104E-05 

Char. 
Err. (%) 

0.0336 

0.2014 

0.0291 

0.1021 

0.0970 

0.0976 

0.0958 

0.0922 

GELB 
Err. (%) 

0.1064 

-0.1071 

0.2031 

-1.1340 

0.6402 

-1.0099 

-0.8192 

7.6030 

HELI 
Err. (%) 

0.0000 

-0.0006 

0.0009 

0.0003 

0.0000 

-0.0001 

0.0004 

-0.0217 



Incremental Char. method Char. GELB HELI 
cross-section results Err. (%) Err. (%) Err. (%) 

AS; 3.86864E-04 0.0308 0.1618 0.0000 

A% 6.90389E-06 0.1080 0.0236 0.0000 

AS:;' 3.39511E-04 0.0228 0.2160 -0.0071 

A S T 2  9.50436E-08 0.0670 -0.8618 0.0000 

AS; 1.78576E-04 0.0835 0.8685 0.0000 

AS: 1.54355E-04 0.0697 -0.6110 0.0000 

A S F 1  4.04578E-05 0.0775 -0.3437 -0.0017 

A S 2 r 2  2.41129E-05 0.0355 10.2027 -0.0984 

Table 5: Adjuster AE values for BCCOUT 

Incremental 1 Char. method 1 Char. 1 GELB HELI 
cross- section Err. (%) 

0.0000 

results 1 Err.(%) 1 Err.(%) 

Table 6: Adjuster A S  values for BCDINT 



Incremental I Char. method 
cross-sect ion results 

Char. GELB 
Err. (%) Err. (%) 

0.0486 -0.0756 
0.0509 -0.1510 
0.0549 -0.1625 

-0.2327 -2.1758 
-0.1403 -2.1278 
-0.3389 -2.2973 
0.0474 -0.0656 
0.0503 -0.1408 
0.0541 -0.1523 

HELI 
Err. (%) 
-0.0002 
0.0000 

-0.0002 
-0.0005 
-0.0006 
0.0006 

-0.0001 
0.0000 

-0.0002 
0.0008 
0.0004 
0.0009 
0.0001 

-0.0003 
-0.0002 
0.0001 

-0.0003 
-0.0001 
-0.0003 
-0.0002 
-0.0002 
0.0001 

-0.0003 
-0.0002 11 

Table 7: A S  values of ZCU (Filled of water) 



Char. method 
results 

I 

Char. 
Err. (% ) 

0.0173 
0.0185 
0.0169 

Increment a1 
cross-sect ion 

AS; 

AE; 

A E F  

AE? 

AS: 

AS^ 

A S f r 2  
I 

GELB 
Err. (%) 

0.1478 
0.0890 
0.0545 

HELI 
Err. (%) 

0.0000 
0.0000 
0.0000 

Table 8: A S  values of ZCU (Voided of water) 
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A. I homogeneous normalization (of Gelbard) 

This method uses a correction for probability matrices trying to preserve the 
homogeneous limit. [lo] Defining: 

this method leads to the following definition of normalized coefficients: 

This is the current default normalisation scheme in DRAGON; in the ASM 
module, the appropriate keyword is GELB. It is suitable to normalize even 
void regions, but it could also yield to some negative unphysical values Qh < 
0. 

A.2. multiplicative normalization 

The idea here is to impose weights wi w 1 that will perturbe the system 
symmetrically to yield new coefficient of the form: 

Insertion of this relation into (19) leads to the following non-linear system: 

which is solved by a Newton-Raphson method. This is probably the best 
scheme; i t  always gives positive probabilities. However, it is not often used 
because of its computing cost. This option is supported in DRAGON under 
the keyword NONL. 

A.3. additive normalization (Villarino) 

A few years ago, a new scheme was developed in the code HELIOS in order 
to symplify the last scheme, while keeping its nice properties. [ll] The idea is 
to use new weights zl fs  $ to perturbe the system in the following way: 



After insertion into (19), it can be easily shown that Gauss-Seidel iterations 
are very efficient to provide the converged solutions. Thus, we define initial 
values of the weigths z { '  = i, and then compute the successive iterations as: 

and this scheme can be easily accelerated by a dynamic parameter. This 
scheme was implemented in the newer version of DRAGON under the key- 
word HELI. It generally gives results as accurated as the NONL scheme at 
an affordable cost. 
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