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ABSTRACT 

One of the main problem encountered in cell calc~lat~ions is that of spat'ial homogeniza- 
tion where one associates to a,n heterogeneous cell an homogeneous set of cross sections. 
The homogenization process is in fact trivial when a totally reflect'ed cell without leakage 
is fully homogenized since it involved only a flux-volume weighting of the isotropic cross 
sections. When anis~t~ropic leakages models are considered, in addition to homogenizing 
isotropic cross sections, the anisotropic ~catt~ering cross section must also be considered. 
The simple option, which consists of using the same homogenization procedure for botch 
the isotropic and anisotropic components of the scattering cross section, leads to incon- 
sistencies between the homogeneous and homogenized transport equation. Here we will 
present a method for homogenizing the anisotropic scattering cross sections that will 
resolve these inconsistencies. 

I. INTRODUCTION 

CANDU reactor calculations requires the knowledge of the few groups cell average 
macroscopic cross sections as well as the incremental cross sections associated with the 
reactivity control devices present in the core.['] The cell calculations required to generate 
the fuel average few group cross sect$ions can generally be performed using an exact 2- 
D description of the cluster cell and a rnultigro~~p microscopic cross section library.I2] 
The evaluation of the incremental cross sections associated with the reactivity devices 
on the other hand is generally based on a simplified 3-D supercell model where the fuel 
cells are partially homogenized and tlie reactivity control devices are located midway 
between two fuel channels. As a consequence, in addition to the full cell homogenization 
necessary to generate the fuel properties required in reactor core calculation, partial cell 
homogenization is also used before the 3-D supercell calculations are performed. 

In the case where the heterogeneous cell transport calculations are performed in the 
absence of leakage, one can show that a flux-volume of homogenization on the main 



transport cross section (total, fission and isotropic scattering) is sufficient to ensure t,hat8 
the tota,l reaction rates obtained by solving the fully homogenized transport problem are 
identical to those computed using t,he heterogeneous transport solution. In the cases 
where a partial homogenization of the cell is considered, the equivalence between reaction 
rates is no longer ensured using this simple technique. However, it is possible to  use 
various technique, including the SPH method, to redefine the partially homogenized cross 
sections in such a way as to restore the reaction rate equivalence relation between the two 
problems. 

When the transport cell calculations are performed using a'n heterogeneous Bl leak- 
age model, an additional problem arises even if a full homogenization of the cell is 
considered.[*' 5] Because this model involves the use of the linearly anisotropic compo- 
nent of the scattering cross section a,nd result in the generation of directional currents 
in addition to the scalar flux, one needs to select a.n adequate homogenization technique 
for the anisotropic scat'tering cross section. One could use for instance the standard flux- 
volume homogenization. However, the problem with this technique is that the tra,nsport 
equation resulting from the homogenization process is incompatible with the equivalent 
homogeneous transport equation. Similarly, the use of a current-volume homogenization 
also leads to problem such as tqhe fact one could use the buckling weighted average cur- 
rent alnd generate an homogeneous scattering cross sections or the directional currents to  
generate direction dependent scattering cross sections. However, as we will show in this 
paper, the equivalence between the homogeneous and homogenized transport problem is 
lost in both case. 

One alternative to restore the equivalence between the ttwo problems would be to use 
a method similar to the SPH technique. However, this would require the evaluation of 
SPH factor even in the case where a full cell homogenization is considered. Here we 
will use a different method which is based on the fact that by correcting adequately 
the fully homogenized anisotropic scattering cross section using the total cross section, 
the equivalence between the homogenized and homogeneous transport equation can be 
restored. We will also show that in the case where a partial h~mogenizat~ion of the cell is 
considered, t,his technique can also be used in a way which is compatible with the SHP 
method. 

11. THE HETEROGENEOUS Bi LEAKAGE MODEL 

The multigroup transport equations which are solved in DRAGON when the hetero- 
geneous Bl leakage model is used are the f0llowing:[~1 5] 

where we will have 



and 

1 f o r g = h ,  
>ah = 0 otherwise 

with Ag a function of B and %. Here x F g  includes the 21 + 1 = 3 term used in the 
spherical harmonic expansion of the scattering cross section and if/& = &&$^ 

In the case of a totally reflected cell, the collision probabilities satisfy the following 
conservation relations: 

111. FULL CELL HOMOGENIZATION 

Let us first consider the case of an infinite a4nd homogeneous cell. The above set of 
transport equations then becomes: 

where 

since for an homogeneous cell Â£? = Ey and Ã /̂> = $9 namely the current in every direc- 
tion should be identical. We can also obta'in t,he homogenized transport equations after 
summing Eqs. (1) and (2) over all the regions I :  



where we have used 

in such a way that 

Now comparing Eqs. (9) and (11) we see that both equations are identical if one assumes 
that: 

and Eg = Â£?; As a result, the flux-volume homogenization technique defined above for 
the various cross sections generates coherent flux equations. 

For the current equations, the problem is not as stra,ightforwa,rd. After some manip- 
ulations we can rewrite Eq. (12) as: 

which can be transformed to a form identical to Eq. (10) using a Bl weighted sum over 
t, he directional currents: 



assuming 

with 

As a result, one sees that the flux/volume homogenization of the anisotropic sca'tkering 
cross sections should be replaced by the Eq. (13) to ensure t>hat the homogenization 
process remains coherent. 

IV. PARTIAL CELL HOMOGENIZATION 

In the case where t*he cell resulting from tohe homogenizakion process is also hetero- 
geneous, namely, the N initial regions are combined into M regions, each of these final 
regions 1 being composed of AdI initial regions z, then the M regions heterogeneous trans- 
port equations take the from: 

where PJ/ (E;) represents the fact that the collision probabilities are computed in this 
case using the homogenized cross sections Ej. The homogenized transport equation on 
the other hand takes t,he form: 

The main problem here is t,hat in order for Eqs. (14) and (16) to be equivalent we need: 

and 



to be simultaneously true. Because there is no simple relation bebeen PJI(SI) and 
Pz (Ej), the direct flux-volume homogenization method described in the previous section 
is no longer adeqmte. The alternative here is to use a non-linear process. Assuming that 
Eq. (18), which represents reaction rate conservantion is satisfied, we could redefine the 
homogenized flux and cross sections as follows: 

and 

where the fact,or 
that used in the 
EjI or E$'~). 

(22) 
p9, are arbitrary and a flux-volume homogenization procedure siini1a.r to 
previous section was used for the flux <ĵ  and the cross section S? (and 

In the case where no leakage is present in the cell or the leakage is homogeneous, 
namely Bi and $Ik are independent of the direction k ,  the SPH factors /^ can be selected 
using an iterative process in such a way as to ensure that Eqs. (19) and (20) are satisfied 
simultaneously (since then P& = ~ $ 1 3 )  .^ As a result the currents will be homogenized 
using the relation: 

which means that the total leakage rat,e out of t,he cell is conserved. 
For the case where the heterogeneous Bl leakage method is considered the problem 

is more complex since in addition to having directional collision probabilities which will 
make it difficult to satisfy Eqs. (19) and (20) the relation P& = P$/3 is no longer va,lid. 
Moreover, the current equation now becomes dependent on [is explicitly, namely Eq. (17) 
becomes: 

As a result,, obt,aining the required SPH factor in this case would require an iterative 
solution of both current and flux solution. 

However if we assume that for the homogenization process all the directional collision 
probability are identical and proportional to P$ and t4hat Eq. (23) remains valid, then 
we can transform Eq. (24) to the form: 

where 

where .EZ9 is homogenized using Eq. (l3), 

and the standard SPH t,echnique is still used to determine the factors &. 



V. RESULTS 

We first tested the full homogenization technique in DRAGON for a simple cell prob- 
lem with and without voiding.!4] Three options have been considered. First, the standard 
flux-volume homogenization technique was used. Then, we considered an intermediate 
technique where Eq. (13) is replaced by 

namely, we assumed tha*t the anisotropic scattering cross section is homogenized using a. 
buckling weighted current-volume procedure. Finally we used the coherent homogeniza- 
tion process described above (see Eq. (13)). 

The results we obtained for a full homogenization of these cells are presented in Table 1. 
The reference calculation represents the results obta,ined using a multiregiorl soluteion to 
the txansport equation while for the three homogenized cases, a homogeneous cell was 
considered. Note that the radial, axial and total leakage computed are not affected con- 
siderably by the homogenization technique however, only the coherent homogenization 
technique ensure that the buckling eigenvalue is conserved after the cell homogenization. 
Moreover, this t,echnique generates homogeneous diffusion coefficients which are identi- 
cal to those obtained in the reference calculation while the two other homogeniza.tion 
techniques lead to errors which can reach 4 %. 

Tlie second problem we considered represents the partial homogenization to three 
regions a,nd the condensation to 2 group of a CANDU 37-elements fuel cell. In this case the 
reference calculations were performed using the WIMS-Winfrith 69 groups library using 
the explicit cluster geometry where each of the 37 fuel pins are subdivided into 2 concentric 
annular regions while the coolant and moderator were subdivided respectively into 6 and 
11 subregions. Using t,his reference solution, the macroscopic cross sections were first 
condensed to 2 energy groups the lower energy of the first energy group being located at  4 
eV. For the three region homogenization we considered a fuel region which cont*a*in all the 
regions located inside the pressure tube (18 subregions), a calandria region which extends 
from the pressure to the calandria tube (3 subregions) and a unique modemtor region 
(11 subregions). Using t'hese homogenized and condensed cross sections we solved the 
resulting 3 region 2 group txansport problem. In the case where the direct condensa,tion 
is considered two options were studied, namely the original flux-volume homogenization 
and the coherent method described in Section 111. We also considered the cases where t*he 
standard and modified (see Section IV) SPH homogenization technique were used. The 
results we obtained are presenkd in Ta,ble 2. 

A few observations are immediately evident. The use of the SPH homogenization 
method improves substantially the value of the Buckling computed when the three region 
model is used. In fact, the correction term in B2 introduced by the coherent homog- 
enization method (-5 %) is much smaller than the correction term introduced by the 
SPH factors (-20 %). However, the diffusion coefficients are only marginally affected by 
the used of the SPH technique (1 %) while the difference observed between the flux- 
volume and the coherent homogenization technique is much larger (4 %) . In fact, the 
only homogenization technique which ensures that both the buckling and the diffusion 



coefficient calculation are in a,greement with the reference results is the combination of 
SPH+coherent method described in Section IV. 

VI. CONCLUSION 

As we saw above there exists a simple but coherent scheme that can be used for the 
full cell homogenization of the linearly anisotropic ~ca~ttering cross sections in the hetero- 
geneous Bi leakage model. In the case where partial cell homogenization is considered 
we have shown that this coherent homogenization scheme can be combined with the SPH 
technique t,o generate a4n adequate homogenization procedure. 
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Table 1: Results of homogenization for the small cell model 

rate (10"~ s-') leakage 
' radial 

Cell 

Cooled 

Voided 

axial 1 total 
Homogenization 
Model 
Reference 
Flux-volume 
Current-volume 
Coherent 
Reference 
Flux-volume 
Current-volume 
Coherent 

B2 
(loq3 cm2) 

Table 2: Results for partlial homogenization of the CANDU cell 

1.3333 
1.3419 
1.3343 
1.3333 

-0.1885 
-0.1949 
-0.1945 
-0.1885 

3.920 
3.924 
3.927 
3.923 

-1.375 
-1.386 
- 1.386 
-1.386 

Homogenization 
Model 

Reference 
Flux-volume 
Coherent 
Flux-volume+SPH 

11 Coherent+SPH 11  3.0454 1 6.535 I 3.283 1 9.818 I 1.386 I 0.951 11 

B2 
cm2) 

3.0397 
3.8069 
3.6423 
3.1510 

leakage rate s-') 
radial 

6.523 
7.087 
7.088 
6.530 

D",,crn) 
g = 1 
1.383 
1.302 
1.375 
1.312 

axial 

3.296 
3.559 
3.559 
3.280 

g = 2 
0.955 
0.922 
0.957 
0.928 

total 

9.819 
10.646 
10.647 
9.810 


