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Abstract

The FEAT code (finite-element analysis for temperature), a general-purpose two-dimensional
finite-element computer code for heat-flow calculations in solids of arbitrary shapes, is
frequently used in thermal design and assessment of CANDU fuel. Examples of applications
include high-burnup pellets (two-dimensional heat conduction in short pellets with big
chamfers), effect of end flux peaking on peak pellet temperature, graphite disc fuel (two-
dimensional heat transfer that is due to the existence of a highly conductive graphite disc
between neighbouring pellets), pellet bottoming during load-following, sheath-bearing pad heat-
transfer analysis for designing a bearing pad that eliminates crevice corrosion, and effect of pellet
grooves for instrumentation and gas storage.

The FEAT code models both steady-state and transient two-dimensional heat conduction with
internal heat generation; with user-specified boundary conditions (e.g.. prescribed boundary heat
convection, prescribed boundary heat fluxes and prescribed boundary temperatures); with
variable material properties such as temperature dependence of thermal conductivity, specific
heat and density (nonlinear heat conduction); and with gaps between different materials (heat
conduction in multiple bodies).

A detailed validation and verification of the FEAT code was recently done using the validation-
matrix approach, which included the following activities:

1. creating validation matrices that include scenario-to-phenomenon table that specifies
phenomena expected to occur during scenarios, and phenomenon-to-data set table that
associates the phenomena to data sets that can be used to validate the modelling of
phenomena; identifying all the features in the FEAT code that need to be tested; searching
for cases to test features; forming a test matrix that consists of 40 test cases based on the
phenomena modelled, for example, the convergence test cases, steady-state cases, transient
cases, etc. All the features of the FEAT code were covered by the test matrix.

2. finding independent solutions for all the test cases from analytical solutions, other codes and
experimental measurements.

3. comparing the FEAT predictions with the independent solutions for each of the test cases.

This paper describes the results from this study. As well, some illustrative examples are given.

The differences between FEAT predictions and results from analytical solutions or other
independent codes are generally within 3.0 %. This result shows that the FEAT code correctly
handles the fundamentals of heat transfer that the code simulates. Isotherms calculated by FEAT
are consistent with a number of experimental observations including tear-drop-shaped voids that
are due to end flux peaking, grain growth profiles in graphite disc fuel and in grooved pellets,
and measured temperatures in the sheath with bearing pad. Also, the study confirms that the
FEAT code converges rapidly to the true solution, both in space and in time.



Introduction

FEAT is a general-purpose finite-element computer code that is used for calculating temperatures
in solids of arbitrary shapes''!. The code models both steady-state and transient'™ two-
dimensional heat conduction, with internal heat generation, with user-specified boundary
conditions (prescribed boundary heat convection, prescribed boundary heat fluxes, and
prescribed boundary temperatures), with variable material properties such as temperature
dependent thermal conductivity, specific heat and density (nonlinear heat conduction), and with
gaps between different materials (heat conduction in multiple bodies). The FEAT code has been
used in nuclear fuel design and analysis. Examples of applications include sheath bearing-pad
heat-transfer analysis for designing a bearing pad that eliminates crevice corrosion; peak pellet
temperature analysis during end flux peaking; and calculations of temperatures in nongrooved
pellets, in grooved pellets, and in graphite disc fuels.

This paper describes the recently completed validation and verification activities for the FEAT
code (version 3.0). This paper also presents the results of some typical cases from the validation
activities as well as some illustrations of applications of the code for nuclear fuel-element heat-
transfer analysis.

The FEAT Advantage

As mentioned above, FEAT is a general-purpose finite-element computer code for heat flow in
single and multiple bodies. The FEAT code was developed for analysis of nuclear fuel for
steady-state and transient conditions, and therefore includes features which optimize its
performance for these applications compared to commercially available general-purpose finite-
element computer codes:

B use of a simple triangular finite element;

B availability of algorithms for automatic generation of finite element meshes for CANDU fuel
geometries demonstrated in Reference 2 and in the present paper to yield accurate results.
These algorithms arrange the finite elements in hexagonal patterns shown to produce
convergent results faster than any other arrangement”';

B use of specific data bases for end flux peaking effects and for temperature-dependence of
UO, thermal conductivity (e.g. MATPRO-9"*), MATPRO-11"" ) as well as for fuel with
various burnups;

M continuous improvements of its technical capabilities (e.g. Reference 2);

B availability of well-designed postprocessing technical capabilities (capability to select output
models within the code) that produce results specifically required for assessments of nuclear
fuel behavior, like volume-averaged temperature values.

With these features, the FEAT computer code has the capability to accurately, effectively and

economically meet the needs of developers, manufacturers and users of nuclear fuel. Below we

present a few cases and applications from the validation and verification of the technical
capabilities of the FEAT finite-element computer code.

Validation and Verification Matrices

Validation matrices, including 2 set of tables, were created: scenario-to-phenomenon table that
specifies phenomena expected to occur during scenarios (Table 1), and phenomenon-to-data set



table that associates the phenomena to data sets that can be used to validate the modelling of
phenomena (Table 2).

After all the features in the FEAT code were identified, cases were found to test these features,
and a test matrix consisting of 40 cases was created. This matrix covers every feature in the
FEAT code (see Table 2). For example, FEAT can solve a steady-state or transient heat-
conduction problem with internal heat generation, in multiple bodies, with variable material
properties, and so on. These features were tested separately in separate cases. Problems in
different coordinate systems (x-y, r-z and -6 coordinate systems) were also tested.

There are 4 series of test cases. Series 1 contains all the cases for steady-state heat conduction
problems that can be solved analytically or by hand calculations; series 2 includes all the cases
for transient heat-conduction problems that can be solved either analytically or by other
independent computer codes (ANSYS, ELOCA); series 3 consists of test cases that can be
compared with experimental measurements or observations; series 4 has the convergence test
(for both mesh convergence and time convergence) cases that can be solved analytically.

Applications of the FEAT code are illustrated with discussion of the cases in series 3 that are
comparisons with direct measurements of fuel pellet or fuel sheath temperature. Although the
overall results will be summarized in the current paper, only a few typical cases are discussed in
detail because of space considerations. In the section that follows, for each typical case a
description will be given first, independent solutions will then be discussed, and finally the
prediction from the FEAT code will be compared with the independent solution.

Comparisons between Independent Solutions and FEAT Predictions

Case 4-1: mesh convergence test for axisymmetric geometry

There is steady-state heat conduction in a long solid cylinder (radius R, thermal conductivity k),
with internal heat generation q" and specified surface temperature T;. Find the centreline
temperature T..

(a) An analytical solution for this problem can be found in the open literature!®). The centreline
temperature is

qn R2
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Input parameters: Ts= 1700 °C, q” = 76.7 x 10° W/m>, k = 2.3 W/m-°C, R = 6 x 10° m. The
result of the analytical solution is Tc= 2000.13 °C.

Io=Ts+

(b) FEAT predictions: Hexagonal meshes, internally generated by the FEAT code, were used in
FEAT predictions. FEAT predictions based on different meshes (different number of radial
nodes) are compared with analytical solutions in Figure 1. It is seen that the FEAT code
converges rapidly in space for axisymmetric problems.

Case 4-3: time convergence test for axisymmetric geometry:

There is transient radial heat conduction in a long solid cylinder (radius R, thermal conductivity
k, density r, specific heat C,). Initial temperature T; is uniform. At time = 0, the temperature of
the surrounding fluid Ty is suddenly decreased. Assuming heat-transfer coefficient h, find the
temperature at a point (r/R) at a time instant t.



(a) Analytical solutions for this problem are available in graphic forms'®”": for given /R, Ngo and
Ngi, the dimensionless temperatures can be found from a chart.

Input parameters: R = 6 x 107 m, /R = 0.4, k = 2.4 W/m-°C, C, = 500J/kg-°C, p = 10.6 x 10°
kg/m®, h = 400 W/m*-°C, T;= 2000°C, T;= 300°C.

kt hR
Nm=gi:p—R——0012578621 Ny =— X =10

T-T,;
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The chart shows that when /R = 0.4, ﬁ— = 1.0 and Ngo = 1.2845,
Bl ity

This analysis leads tot = 102.118 s and T = 555°C.

is equal to 0.150.

(b) FEAT predictions using different time steps: A mesh of 26 radial nodes was used. FEAT
predictions of the temperature after 102.118 s are obtained using different time steps and are
compared with analytical solutions in Figure 2. It is seen that the FEAT code converges rapidly
in time.

Case 1-3: heat transfer in a finite cylinder

A finite solid cylinder has radius of R and length of L. Thermal conductivity of the cylinder is k.
The surface at r = R is heated to the temperature of T, while the 2 ends of the cylinder are kept at
zero temperature (T¢). Find the temperature profiles at 2 different z values.

(a) An analytical solution for this problem (Figure 3) is ava1lablel8]
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Input parameters: R = 6 x 10° m, H= 7.5 x 10" m, k = 3.7 W/m-°C, T, = 2000°C, T, = 0°C. The
results of the analytical solution are plotted in Figure 4.

(b) FEAT predictions: A hexagonal mesh of 17 nodes in radial direction and 21 nodes in axial
direction was used. Boundary conditions are shown in Figure 3. FEAT predictions are compared
with analytical solutions in Figure 4. The difference between the 2 solutions is within the range
of (-0.42 %, 0.07%), and it is considered to be in excellent agreement.

Case 1-6: heat transfer in 2 concentric cylinders

There is a thin gap (at R;) between inner and outer long circular cylinders. Heat (q") is generated
in the inner cylinder (radius R, thermal conductivity k,, density p,, specific heat Cy;).
Conductance (hy) exists across the gap between the inner cylinder and the outer cylinder (radius
R;, thermal conductivity ki, density p,, specific heat Cp;). The outer cylinder is cooled by



surrounding fluid (Ty, hy). Find the temperature profiles with r in the inner cylinder and in the
outer cylinder.

(a) An analytical solution for this problem (Figure 5 (a)) can be derived as follows:
Governing equations and boundary conditions are

ko d  dr® ar®
inner cylinder g +7;(r o )=0, o B is finite
k, d dr?
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The solution is obtained by integrating the differential equations and finding integration
constants:

TP =C® Inr+ G, where ¥ = 'Iﬁ and
2k,
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Input parameters: R, =6 x 10° m, R,= 8 x 10° m, k, = 3.7 Wim-°C, k,=12.18 W/m-°C, h;= 1.0
x 10* W/m%°C, hy = 2.0 x 10* W/m*-°C, T;= 0°C, q” =2.18 x 10® W/m®. The results of the
analytical solution are plotted in Figure 6.

(b) FEAT predictions: A hexagonal mesh (8 and 3 nodes in radial direction in inner bar and in
outer bar, 10 nodes in axial direction) was used. Boundary conditions are as shown in Figure 5
(b). Results of the FEAT prediction and comparison with the analytical solution are illustrated in
Figure 6. The difference between the 2 solutions is within the range of (-0.09%, 0.6%), and again
it is considered to be in excellent agreement.

Case 2-6: transient heat conduction in a semi-infinite slab

A semi-infinite slab has constant density p, specific heat C, and thermal conductivity k. The slab
is initially at zero temperature (T;). At time = 0, heat is generated in the slab (q”). The surface at



x = 0 is maintained at zero temperature (T,, = 0). Find the temperature profiles in the slab for the
different time instants.

(a) Analytical solution for this problem (Figure 7 (a)) can be found in the literature'®’. Governing
equation and boundary conditions are
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The analytical solution for temperature T is
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In the present problem, a = 0, b = 0, T;= 0, the solution for temperature is reduced to
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Input parameters: p = 10.0 x 10° kg/m’, C,= 500 J/kg-°C, k = 3.7 W/m-°C, T;=T,, = 0°C, q" =2
x 10® W/m’. The temperature profiles at different time instants from the analytical solution are
plotted in Figure 8.

T=(a+a'q !
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(b) FEAT predictions: A hexagonal mesh with 17 nodes in x direction (6.0 mm) and 21 nodes in
y direction (7.5 mm) was used. Boundary conditions are as shown in Figure 7 (b). FEAT
predictions are compared with analytical solution in Figure 8. Both solutions are in very good
agreement (the differences from both calculations are in the range of (-2.44%, 0.47%)).

Case 2-9: heat conduction with time-dependent heat generation

An infinite circular cylinder (radius R) is initially at temperature T;. At time = 0, heat is
generated in the cylinder (@” = q”(t)). The surface (at r = R) is cooled by surrounding fluid
(Ty), and the heat-transfer coefficient between the cylinder and fluid is h. Assume that the
cylinder has constant properties (thermal conductivity k, density p and specific heat C,). Find the
temperature profiles in the cylinder for the different time instants.

(a) The ANSYS code was used to provide an independent solution for this problem. The
boundary conditions are shown in Figure 9. A hexagonal mesh with 17 nodes in radial direction
(6.0 mm) and 21 nodes in axial direction (7.5 mm) was used. Input parameters: R = 6 x 10° m, T;
=300°C, q” = 10°x 500(1 + 0.025t) W/m’, T¢= 300°C , h = 2 x 10* W/m>°C, k = 3.7 W/m-°C,
p =10 x 10’ kg/m’, C, = 500 J/kg-°C. ANSYS predictions are plotted in Figure 10.

(b) FEAT predictions: The same hexagonal mesh was used. The same boundary conditions were
applied. FEAT predictions are compared with the ANSYS solution in Figure 10. The differences
from both calculations are in the range of (0.0%, 0.18%)). It is considered to be excellent
agreement.



Case 2-14: centreline temperatures, as predicted by FEAT and ELOCA

Find the centreline temperature variation of CANDU fuel (a sheathed pellet) with time during
power pulse. No flux peaking and no axial heat conduction are considered. Typical values are
used for heat-transfer coefficients for pellet and sheath, sheath and coolant and power pulse.

(a) The ELOCA code was used to provide an independent solution for this problem'?. The mesh
is shown in Figure 11. ELOCA predictions are plotted in Figure 12.

(b) FEAT predictions: The same mesh was used. The same boundary conditions were applied.
FEAT predictions are compared with the ELOCA solution in Figure 12. The difference between
the 2 solutions is within the range of (-0.75%. 2.2%).

The overall comparison of FEAT predictions with independent solutions (obtained from
analytical solutions, other independent computer codes) is summarized in Figure 13, which
shows that all the FEAT-predicted temperatures are almost on the diagonal line. The differences
between FEAT predictions and results from analytical solutions or other independent codes are
within 3.0%.

Application of the FEAT code

The FEAT code can be used for thermal design and assessment. Two examples will be discussed
here to illustrate the application of the FEAT code: effect of end flux peaking on pellet
temperature distribution, and heat-transfer analysis for the area near the fuel sheath and bearing
pad interface.

Case 3-2: end-flux-peaking—induced tear-drop—shaped void
Compare the predicted isotherms with the end-flux-peaking—induced tear-drop-shaped voids in
fuel pellets (observed from neutron radiograph of some fuel elements from bundle GB).

(a) Neutron radiographs have indicated tear-drop-shaped voids in some of the fuel elements'"!
(Figure 14). These voids occurred near fuel element ends after prolonged operation at high
power. End-flux-peaking—induced axial temperature variation is responsible for the formation of
the voids. The voids are believed to be associated with the temperature above 2100°C!".

(b) FEAT predictions: The mesh used is the same mesh that is shown in Figure 11. A typical end
flux peaking profile for CANDU fuel (Figure 15) was used. Figure 14 shows predicted
isotherms, and they have the same shape as experimentally observed voids.

Case 3-3: thermocouple measurement near the sheath-bearing-pad interface
Compare the predicted temperatures with those obtained from the thermocouple measurement
near a bearing pad.

(a) An experimental measurement of temperatures in the pressure tube in contact with the
bearing pad of a sheath is available!”! (Figure 16). In the experiment, a heat flux of 110 W/cm?
was applied on the inner surface of the sheath. The thermocouple-measured temperatures were
between 310°C and 311°C for the point near pressure tube inner surface (near bearing pad) and

between 303°C and 304°C for the point near the pressure tube outer surface (away from bearing
pad).



(b) FEAT predictions: The mesh used contains 310 finite elements and 199 nodes (Figure 16).
Boundary conditions are also shown in Figure 16. The predicted temperatures for the 2 locations
are 310.20°C and 303.85°C respectively. They are very close to the measurement. An isotherm
plot (Figure 17) is also given to show the temperature distribution.

Conclusions

A detailed validation of the FEAT code was performed using the validation-matrix approach.
Validation matrices containing scenario-to-phenomenon and phenomenon-to-data set tables were
created. The data set used for validation consists of analytical solutions, solutions from other
codes and experimental measurements. Some verifications were also conducted, for example, test
for both mesh convergence and time convergence. Forty cases listed in the test matrix, which
covers all the features in the FEAT code were used. The convergence tests confirmed that the
FEAT code converges rapidly to the true solution, both in space and in time. For 20 cases out of
the 27 cases in which direct comparisons in temperature calculations can be made, predictions
from FEAT are in excellent agreement (1.0%) with independent solutions (see Figure 18).
General FEAT predictions are within 3.0% of the results of the analytical solutions or of other
independent codes. This validation shows that the FEAT code handles fundamentals of heat
transfer correctly. The FEAT code is also able to predict tear-drop-shaped voids that are due to
end flux peaking and temperature distribution in the sheath with bearing pad. The predicted
isotherms are consistent with the experimental observations.
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Nomenclature

G specific heat (J/kg-°C)

h heat-transfer coefficient (W/m2-°C)

H height of a rectangular slab (m)

I, J; Bessel function of ith order

k thermal conductivity (W/m-°C)

L length of rectangular slab or cylinder (m)

Npi Biot modulus Ng; = hR/k (for cylinder) or Ng;= hL/k (for slab)

Ngo Fourier modulus Npo = at/R? (for cylinder) or Ngo = at/L? (for slab)

q heat flux (W/m?)

q”’ internal heat generation rate (W/m”)

r radial distance from cylinder centre (m)
R radius of cylinder (m)

t time (s)

T temperature (°C)

X,y  coordinates (m)

Greek symbols
o thermal diffusivity o = k/(pc) (m%/s)
b penetration depth or thickness of an infinite slab (m)



A differences between FEAT predictions and reference solutions (%)
v,  constant in thermal conductivity formulae

0 angular coordinate

p density (kg/m®)

superscripts
(1), (2) in region 1 or region 2

subscripts

0,i initial

S,w at cylinder surface or slab wall
c at centreline or centre plane
1,2 in region 1 or region 2

e at cylinder end

f fluid
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Table 1 Validation Matrix: Scenario-to-Phenomenon

Scenario

Phenomenon

scenario 1: peak pellet temperature
during end flux peaking

heat conduction in cylindrical coordinate system

multiple bodies with gaps

variable thermal conductivity (temperature dependent)

time-dependent internal heat generation

convective boundaries

scenario 2: sheath-bearing pad heat
transfer

—llnfsiWwnNe

heat conduction in Cartesian coordinate system

multiple bodies with gaps

two-dimensional temperature profiles

variable thermal conductivity (temperature dependent)

surface flux

adiabatic boundaries

convective boundaries

scenario 3: heat transfer in graphite disc
fuel

= | N = R B A S

heat conduction in cylindrical coordinate system

multiple bodies with gaps

two- dimensional temperature profiles

variable thermal conductivity (temperature dependent)

time-dependent internal heat generation

adiabatic boundaries

convective boundaries

scenario 4: pellet temperature with or
without pellet bottoming

e IR = A BN PN R

heat conduction in cylindrical coordinate system

multiple bodies with gaps

one- or two- dimensional temperature profiles

variable thermal conductivity (temperature dependent)

time-dependent internal heat generation

|| |WIN

convective boundaries




Table 2

Validation Matrix: Phenomenon-to-Data Set

| Data Set

l Phenomenon

cylindrical coordinate system

1. heat conduction in cylindrical coordinate | case 1-3, case 1-4, case 1-6, case 1-8, case 2-2, case 2-
system 3, case 2-7, case 2-9, case 2-10, case 2-12, case 2-14,
case 3-2, case 3-4.
2. multiple bodies with gaps case 1-6, case 2-12, case 2-14, case 3-2, case 3-4.
3. two- dimensional temperature profiles case 1-3, case 2-3, case 3-2, case 3-4.
4, variable thermal conductivity case 1-8, case 2-10, case 2-14, case 3-2, case 3-4.
(temperature dependent)
5. | time- dependent internal heat generation | case 2-9, case 2-14.
6. adiabatic boundaries case 1-4, case 1-6, case 1-8, case 2-2, case 2-7, case 2-9,
case 2-10, case 2-12, case 2-14, case 3-2, case 3-4
7. convective boundaries case 1-4, case 1-6, case 2-2, case 2-3, case 2-9, case 2-
10, case 2-12, case 2-14, case 3-2, case 3-4.
Cartesian coordinate system
1. heat conduction in Cartesian coordinate | case 1-1, case 1-2, case 1-5, case 1-7, case 1-10, case 2-
system 1, case 2-4, case 2-5, case 2-0, case 2-§, case 2-11, case
3-1, case 3-3.
2. multiple bodies with gaps case 1-5, case 2-11, case 3-3.
3. two- dimensional temperature profiles case 1-2, case 1-10, case 2-4, case 3-1, case 3-3.
4. variable thermal conductivity case 1-7, case 1-10, case 2-5, case 3-1, case 3-3.
(temperature dependent)
5. surface flux case 1-10, case 2-5, case 3-3.
6. adiabatic boundaries case 1-1, case 1-5, case 1-7, case 1-10, case 2-1, case 2-
5, case 2-6, case 2-8, case 2-11, case 3-3.
7. convective boundaries case 1-1, case 1-5, case 1-10, case 2-1, case 2-11, case

3-1, case 3-3.




Table 3 Feature-based Test Matrix
Feature Steady-State Transient
axisymmetric plane axisymmetric plane
cylindrical Cartesian cylindrical Cartesian
coordinate system | coordinate system coordinate system coordinate system
(r.2) (x.y) (r.z) (x.y)
(1). convergence case 4-1 case 4-2 case 4-3 case 4-4

(2). heat conduction

case 1-3, case 1-4
case 1-6, case 1-8
case 3-2, case 3-4

case 1-1, case 1-2
case 1-5, case 1-7
case 1-10, case 3-1
case 3-3

case 2-2, case 2-3
case 2-7, case 2-9
case 2-10,case 2-12
case 2-14

case 2-1, case 2-4
case 2-5, case 2-6
case 2-8, case 2-11

(3). internai heat source or
sink

case -6, case 1-8
case 3-2, case 3-4

case 1-1, case 1-5
case 3-1

case 2-7, case 2-12

case 2-6, case 2-11

(4). time-dependent internal | n/a n/a case 2-9, case 2-14 | case 2-8

heat source or sink.

(5). gap/multiple bodies. Case 1-6, case 3-2 case 1-5, case 3-1 case 2-12, case 2-11
case 3-4 case 3-3 case 2-14

(6). variable properties k', | case 1-8, case 3-2 case 1-7, case 1-10 | case 2-10, case 2-5

C, etc. case 3-4 case 3-1, case 3-3 | case 2-14

(7). Two-dimensional case 1-3, case 3-2 case 1-2, case 1-10 | case 2-3 case 2-4

profiles case 3-4 case 3-1, case 3-3

(8). Adiabatic BC™

case 1-4, case 1-6
case 1-8, case 3-2
case 3-4

case 1-1, case 1-5
case 1-7, case 1-10
case 3-3

case 2-2, case 2-7
case 2-9, case 2-10
case 2-12,case 2-14

case 2-1, case 2-5
case 2-6, case 2-8
case 2-11

(9). Surface flux

case 1-4

case 1-10, case 3-3

case 2-3

case 2-5

(10). Surface temperature

case 1-3, casel-8

case 1-2, case 1-7
case 1-10

case 2-7

case 2-4, case 2-6,
case 2-8

(11). Convective BC

case 1-4, case 1-6
case 3-2, case 3-4

case 1-1, case 1-5
case 1-10, case 3-1
case 3-3

case 2-2, case 2-3
case 2-9, case 2-10
case 2-12,case 2-14

case 2-1, case 2-11

(12). Central hole case 1-4 n/a case 2-3 n/a
(13). Polar coordinate case 1-9 n/a case 2-13 n/a
system (r,6)

(14). heat generation in case 1-13, case 3-2 | n/a case 2-14 n/a
pellets case 3-4

(15). Thermal conductivity | case 1-11

of U02

(16). Thermal conductivity | case 1-12

of Zircaloy

(17). link with ELDAT file | case 1-14 n/a case 2-14 n/a
(18). link with CONTOUR | case 1-15 case 1-16 case 2-15 case 2-16

code

"k is thermal conductivity of material.

BC is boundary condition(s).
series 2: transient capabilities.
series 4: convergence test.

C, is specific heat of material.

series 1: steady-state capabilities.
series 3: comparison with measurements.
n/a: not applicable.
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