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Abstract 

The FEAT code (finite-element analysis for temperature), a general-purpose two-dimensional 
finite-element computer code for heat-flow calculations in solids of arbitrary shapes, is 
frequently used in thermal design and assessment of CANDU fuel. Examples of applications 
include high-burnup pellets (two-dimensional heat conduction in short pellets with big 
chamfers), effect of end flux peaking on peak pellet temperature, graphite disc fuel (two- 
dimensional heat transfer that is due to the existence of a highly conductive graphite disc 
between neighbouring pellets), pellet bottoming during load-following, sheath-bearing pad heat- 
transfer analysis for designing a bearing pad that eliminates crevice corrosion, and effect of pellet 
grooves for instrumentation and gas storage. 

The FEAT code models both steady-state and transient two-dimensional heat conduction with 
internal heat generation; with user-specified boundary conditions (e.g.. prescribed boundary heat 
convection, prescribed boundary heat fluxes and prescribed boundary temperatures); with 
variable material properties such as temperature dependence of thermal conductivity, specific 
heat and density (nonlinear heat conduction); and with gaps between different materials (heat 
conduction in multiple bodies). 

A detailed validation and verification of the FEAT code was recently done using the validation- 
matrix approach, which included the following activities: 
1. creating validation matrices that include scenario-to-phenomenon table that specifies 

phenomena expected to occur during scenarios. and phenomenon-to-data set table that 
associates the phenomena to data sets that can be used to validate the modelling of 
phenomena; identifying all the features in the FEAT code that need to be tested; searching 
for cases to test features; forming a test matrix that consists of 40 test cases based on the 
phenomena modelled, for example, the convergence test cases, steady-state cases, transient 
cases, etc. All the features of the FEAT code were covered by the test matrix. 

2. finding independent solutions for all the test cases from analytical solutions, other codes and 
experimental measurements. 

3. comparing the FEAT predictions with the independent solutions for each of the test cases. 
This paper describes the results from this study. As well, some illustrative examples are given. 

The differences between FEAT predictions and results from analytical solutions or other 
independent codes are generally within 3.0 %. This result shows that the FEAT code correctly 
handles the fundamentals of heat transfer that the code simulates. Isotherms calculated by FEAT 
are consistent with a number of experimental observations including tear-drop-shaped voids that 
are due to end flux peaking, grain growth profiles in graphite disc fuel and in grooved pellets. 
and measured temperatures in the sheath with bearing pad. Also, the study confirms that the 
FEAT code converges rapidly to the true solution, both in space and in time. 



Introduction 

FEAT is a general-purpose finite-element computer code that is used for calculating temperatures 
in solids of arbitrary shapes1". The code models both steady-state and tran~ient'~] two- 
dimensional heat conduction. with internal heat generation, with user-specified boundary 
conditions (prescribed boundary heat convection, prescribed boundary heat fluxes, and 
prescribed boundary temperatures), with variable material properties such as temperature 
dependent thermal conductivity, specific heat and density (nonlinear heat conduction), and with 
gaps between different materials (heat conduction in multiple bodies). The FEAT code has been 
used in nuclear fuel design and analysis. Examples of applications include sheath bearing-pad 
heat-transfer analysis for designing a bearing pad that eliminates crevice corrosion; peak pellet 
temperature analysis during end flux peaking; and calculations of temperatures in nongrooved 
pellets, in grooved pellets, and in graphite disc fuels. 

This paper describes the recently completed validation and verification activities for the FEAT 
code (version 3.0). This paper also presents the results of some typical cases from the validation 
activities as well as some illustrations of applications of the code for nuclear fuel-element heat- 
transfer analysis. 

The FEAT Advantage 

As mentioned above, FEAT is a general-purpose finite-element computer code for heat flow in 
single and multiple bodies. The FEAT code was developed for analysis of nuclear fuel for 
steady-state and transient conditions, and therefore includes features which optimize its 
performance for these applications compared to commercially available general-purpose finite- 
element computer codes: 

use of a simple triangular finite element; 
availability of algorithms for automatic generation of finite element meshes for CANDU fuel 
geometries demonstrated in Reference 2 and in the present paper to yield accurate results. 
These algorithms arrange the finite elements in hexagonal patterns shown to produce 
convergent results faster than any other arrangement[31; 
use of specific data bases for end flux peaking effects and for temperature-dependence of 
U02 thermal conductivity (e.g. MATPRO-gr4], MATPRO-1 115' ) as well as for fuel with 
various burnups; 
continuous improvements of its technical capabilities (e.g. Reference 2); 
availability of well-designed postprocessing technical capabilities (capability to select output 
models within the code) that produce results specifically required for assessments of nuclear 
fuel behavior, like volume-averaged temperature values. 

With these features, the FEAT computer code has the capability to accurately, effectively and 
economically meet the needs of developers, manufacturers and users of nuclear fuel. Below we 
present a few cases and applications from the validation and verification of the technical 
capabilities of the FEAT finite-element computer code. 

Validation and Verification Matrices 

Validation matrices, including 2 set of tables, were created: scenario-to-phenomenon table that 
specifies phenomena expected to occur during scenarios (Table l),  and phenomenon-to-data set 



table that associates the phenomena to data sets that can be used to validate the modelling of 
phenomena (Table 2). 

After all the features in the FEAT code were identified, cases were found to test these features, 
and a test matrix consisting of 40 cases was created. This matrix covers every feature in the 
FEAT code (see Table 2). For example, FEAT can solve a steady-state or transient heat- 
conduction problem with internal heat generation, in multiple bodies, with variable material 
properties, and so on. These features were tested separately in separate cases. Problems in 
different coordinate systems (x-y, r-z and r-9 coordinate systems) were also tested. 

There are 4 series of test cases. Series 1 contains all the cases for steady-state heat conduction 
problems that can be solved analytically or by hand calculations; series 2 includes all the cases 
for transient heat-conduction problems that can be solved either analytically or by other 
independent computer codes (ANSYS, ELOCA); series 3 consists of test cases that can be 
compared with experimental measurements or observations; series 4 has the convergence test 
(for both mesh convergence and time convergence) cases that can be solved analytically, 

Applications of the FEAT code are illustrated with discussion of the cases in series 3 that are 
comparisons with direct measurements of fuel pellet or fuel sheath temperature. Although the 
overall results will be summarized in the current paper, only a few typical cases are discussed in 
detail because of space considerations. In the section that follows, for each typical case a 
description will be given first, independent solutions will then be discussed, and finally the 
prediction from the FEAT code will be compared with the independent solution. 

Comparisons between Independent Solutions and FEAT Predictions 

Case 4- 1: mesh convergence test for axisymrnetric geometry 
There is steady-state heat conduction in a long solid cylinder (radius R, thermal conductivity k), 
with internal heat generation q" and specified surface temperature Ts. Find the centreline 
temperature Tc. 

(a) An analytical solution for this problem can be found in the open literature'? The centreline 
temperature is 

Input parameters: Ts= 1700 OC, q" = 76.7 x lo6 w/m3, k = 2.3 W/meOC, R = 6 x m. The 
result of the analytical solution is Tc = 2000.13 O C .  

(b) FEAT predictions: Hexagonal meshes, internally generated by the FEAT code, were used in 
FEAT predictions. FEAT predictions based on different meshes (different number of radial 
nodes) are compared with analytical solutions in Figure 1. It is seen that the FEAT code 
converges rapidly in space for axisymmetric problems. 

Case 4-3: time convergence test for axisyrnrnetric geometry: 
There is transient radial heat conduction in a long solid cylinder (radius R, thermal conductivity 
k, density r, specific heat Cp). Initial temperature Ti is uniform. At time = 0, the temperature of 
the surrounding fluid Tf is suddenly decreased. Assuming heat-transfer coefficient h, find the 
temperature at a point (r/R) at a time instant t. 



(a) Analytical solutions for this problem are available in graphic forms'6s71: for given r/R. Npo and 
NBI, the dimensionless temperatures can be found from a chart. 
Input parameters: R = 6 x 10'~ m, r/R = 0.4, k = 2.4 W/mÂ°C Cp = 500Jkg-OC, p = 10.6 x lo3 
kg/m3, h = 400 w/m2-'c, Ti = 2000Â°C Tf= 300Â°C 

1 T - T .  
A 

- 1.0 and NF0 = 1.2845, - The chart shows that when r/R = 0.4, - - is equal to 0.150. 
NBI T.  -T, 

This analysis leads to t = 102.118 s and T = 55SÂ°C 

(b) FEAT predictions using different time steps: A mesh of 26 radial nodes was used. FEAT 
predictions of the temperature after 102.118 s are obtained using different time steps and are 
compared with analytical solutions in Figure 2. It is seen that the FEAT code converges rapidly 
in time. 

Case 1-3: heat transfer in a finite cylinder 
A finite solid cylinder has radius of R and length of L. Thermal conductivity of the cylinder is k. 
The surface at r = R is heated to the temperature of Ts while the 2 ends of the cylinder are kept at 
zero temperature (Te). Find the temperature profiles at 2 different z values. 

(a) An analytical solution for this problem (Figure 3) is a~ailable'~': 

with f(z) = Ti = constant, the integration part can be reduced to 

thus giving the analytical solution of T(r, z )  in the solid cylinder: 

Input parameters: R = 6 x 10"' m, H = 7.5 x 10- m. k = 3.7 W/mÂ°C Ts = 2000Â°C Te = OÂ°C The 
results of the analytical solution are plotted in Figure 4. 

(b) FEAT predictions: A hexagonal mesh of 17 nodes in radial direction and 21 nodes in axial 
direction was used. Boundary conditions are shown in Figure 3. FEAT predictions are compared 
with analytical solutions in Figure 4. The difference between the 2 solutions is within the range 
of (-0.42 %, 0.07%), and it is considered to be in excellent agreement. 

Case 1-6: heat transfer in 2 concentric cylinders 
There is a thin gap (at R1) between inner and outer long circular cylinders. Heat (q") is generated 
in the inner cylinder (radius Rl,  thermal conductivity k i ,  density pi, specific heat Cp, ) .  
Conductance (hi) exists across the gap between the inner cylinder and the outer cylinder (radius 
R2, thermal conductivity k2, density pi, specific heat Cp2). The outer cylinder is cooled by 



surrounding fluid (Try h2). Find the temperature profiles with r in the inner cylinder and in the 
outer cylinder. 

(a) An analytical solution for this problem (Figure 5 (a)) can be derived as follows: 
Governing equations and boundary conditions are 

kl d d ~ ( l )  
inner cylinder q"+ - - ( r - )  = 0, 

r  dr dr dr 

k2 d dT") 
outer cylinder -- ( r - )=O 

r  dr dr 

across gap 
dT ( I '  

- kl -1 2nR1 L = q11vr~12L = /z1 - (q") - q(2) ) 2nR1 L 
dr r=R,  

steady state -2nR,L=-kl-  2nR, L = q"-nR, * L 
dr 

r= R, 
dr 

r =  R, 

The solution is obtained by integrating the differential equations and finding integration 
constants: 

RI q" 
T ' ~ '  = c,'~' In r + C2"', where c,'~' = -- and 

, 2k2 

T ( I )  =-- ' r' + c2'" , where 
4 4  

Input parameters: R l  = 6 x 10 '~  m, R2= 8 x 1 0 ' ~  m, kl  = 3.7 W/mS0C, k2= 12.18 Wlm-OC, hi = 1.0 
x lo4 w / r n 2 . ~ c ,  h2= 2.0 x 10' w/rn2.'c, Tf = OÂ°C q" = 2.18 x lo8 w/m3. The results of the 
analytical solution are plotted in Figure 6. 

(b) FEAT predictions: A hexagonal mesh (8 and 3 nodes in radial direction in inner bar and in 
outer bar, 10 nodes in axial direction) was used. Boundary conditions are as shown in Figure 5 
(b). Results of the FEAT prediction and comparison with the analytical solution are illustrated in 
Figure 6. The difference between the 2 solutions is within the range of (-0.09%, 0.6%), and again 
it is considered to be in excellent agreement. 

Case 2-6: transient heat conduction in a semi-infinite slab 
A semi-infinite slab has constant density p. specific heat Cp and thermal conductivity k. The slab 
is initially at zero temperature (Ti). At time = 0, heat is generated in the slab (q"). The surface at 



x = 0 is maintained at zero temperature (Tw = 0). Find the temperature profiles in the slab for the 
different time instants. 

(a) Analytical solution for this problem (Figure 7 (a)) can be found in the ~iterature'~'. Governing 
equation and boundary conditions are 

The analytical solution for temperature T is 

x 2 2^CC4 
where erf(-) = - e f  d?, 24a-t -fn 0 

In the present problem, a = 0, b = 0, Ti = 0, the solution for temperature is reduced to 

Input parameters: p = 10.0 x lo3 kg/m3, Cp = 500 J/kg-OC, k = 3.7 W/mmÂ°C Ti = TÃ = OÂ°C q" = 2 
x lo8 w/m3. The temperature profiles at different time instants from the analytical solution are 
plotted in Figure 8. 

(b) FEAT predictions: A hexagonal mesh with 17 nodes in x direction (6.0 mm) and 21 nodes in 
y direction (7.5 mm) was used. Boundary conditions are as shown in Figure 7 (b). FEAT 
predictions are compared with analytical solution in Figure 8. Both solutions are in very good 
agreement (the differences from both calculations are in the range of (-2.44%, 0.47%)). 

Case 2-9: heat conduction with time-dependent heat generation 
An infinite circular cylinder (radius R) is initially at temperature Ti. At time = 0, heat is 
generated in the cylinder (ql' = ql'(t)). The surface (at r = R) is cooled by surrounding fluid 
(Tf), and the heat-transfer coefficient between the cylinder and fluid is h. Assume that the 
cylinder has constant properties (thermal conductivity k, density p and specific heat C,,). Find the 
temperature profiles in the cylinder for the different time instants. 

(a) The ANSYS code was used to provide an independent solution for this problem. The 
boundary conditions are shown in Figure 9. A hexagonal mesh with 17 nodes in radial direction 
(6.0 mm) and 2 1 nodes in axial direction (7.5 mrn) was used. Input parameters: R = 6 x 10 '~  m, Ti 
= 300Â°C q" = lo6x 500(1 + 0.023) w/m3, Tf= 300Â°C h = 2 x 10%m2-'c, k = 3.7 W/mÂ°C 
p = 10 x lo3 kg/m3, Cn = 500 Jkg-OC. ANSYS predictions are plotted in Figure 10. 

(b) PEAT predictions: The same hexagonal mesh was used. The same boundary conditions were 
applied. FEAT predictions are compared with the ANSYS solution in Figure 10. The differences 
from both calculations are in the range of (0.096, 0.18%)). It is considered to be excellent 
agreement. 



Case 2- 14: centreline temperatures, as predicted by FEAT and ELOCA 
Find the centreline temperature variation of CANDU fuel (a sheathed pellet) with time during 
power pulse. No flux peaking and no axial heat conduction are considered. Typical values are 
used for heat-transfer coefficients for pellet and sheath, sheath and coolant and power pulse. 

(a) The ELOCA code was used to provide an independent solution for this problem'21. The mesh 
is shown in Figure 1 1. ELOCA predictions are plotted in Figure 12. 

(b) FEAT predictions: The same mesh was used. The same boundary conditions were applied. 
FEAT predictions are compared with the ELOCA solution in Figure 12. The difference between 
the 2 solutions is within the range of (-0.75%. 2.2%). 

The overall comparison of FEAT predictions with independent solutions (obtained from 
analytical solutions, other independent computer codes) is summarized in Figure 13, which 
shows that all the FEAT-predicted temperatures are almost on the diagonal line. The differences 
between FEAT predictions and results from analytical solutions or other independent codes are 
within 3.0%. 

Application of the FEAT code 

The FEAT code can be used for thermal design and assessment. Two examples will be discussed 
here to illustrate the application of the FEAT code: effect of end flux peaking on pellet 
temperature distribution, and heat-transfer analysis for the area near the fuel sheath and bearing 
pad interface. 

Case 3-2: end-flux-peaking-induced tear-drop-shaped void 
Compare the predicted isotherms with the end-flux-peaking-induced tear-drop-shaped voids in 
fuel pellets (observed from neutron radiograph of some fuel elements from bundle GB). 

(a) Neutron radiographs have indicated tear-drop-shaped voids in some of the fuel elements"' 
(Figure 14). These voids occurred near fuel element ends after prolonged operation at high 
power. End-flux-peaking-induced axial temperature variation is responsible for the formation of 
the voids. The voids are believed to be associated with the temperature above 2 1 0 0 ~ ~ ~ " .  

(b) FEAT predictions: The mesh used is the same mesh that is shown in Figure 11. A typical end 
flux peaking profile for CANDU fuel (Figure 15) was used. Figure 14 shows predicted 
isotherms, and they have the same shape as experimentally observed voids. 

Case 3-3: thermocouple measurement near the sheath-bearing-pad interface 
Compare the predicted temperatures with those obtained from the thermocouple measurement 
near a bearing pad. 

(a) An experimental measurement of temperatures in the pressure tube in contact with the 
bearing pad of a sheath is available'" (Figure 16). In the experiment, a heat flux of 1 10 w/cm2 
was applied on the inner surface of the sheath. The thermocouple-measured temperatures were 
between 310Â° and 3 1 1Â° for the point near pressure tube inner surface (near bearing pad) and 
between 303OC and 304OC for the point near the pressure tube outer surface (away from bearing 
pad). 



(b) FEAT predictions: The mesh used contains 3 10 finite elements and 199 nodes (Figure 16). 
Boundary conditions are also shown in Figure 16. The predicted temperatures for the 2 locations 
are 3 1 0.20Â° and 303.85OC respectively . They are very close to the measurement. An isotherm 
plot (Figure 17) is also given to show the temperature distribution. 

Conclusions 

A detailed validation of the FEAT code was performed using the validation-matrix approach. 
Validation matrices containing scenario-to-phenomenon and phenomenon-to-data set tables were 
created. The data set used for validation consists of analytical solutions, solutions from other 
codes and experimental measurements. Some verifications were also conducted, for example, test 
for both mesh convergence and time convergence. Forty cases listed in the test matrix, which 
covers all the features in the FEAT code were used. The convergence tests confirmed that the 
FEAT code converges rapidly to the true solution, both in space and in time. For 20 cases out of 
the 27 cases in which direct comparisons in temperature calculations can be made, predictions 
from FEAT are in excellent agreement (1.0%) with independent solutions (see Figure 18). 
General FEAT predictions are within 3.0% of the results of the analytical solutions or of other 
independent codes. This validation shows that the FEAT code handles fundamentals of heat 
transfer correctly. The FEAT code is also able to predict tear-drop-shaped voids that are due to 
end flux peaking and temperature distribution in the sheath with bearing pad. The predicted 
isotherms are consistent with the experimental observations. 

Acknowledgements 

Authors gratefully acknowledge R. Aboud and Q. M. Lei for reviewing this manuscript and for 
providing analytical solutions for some of the test cases respectively. 

Nomenclature 

specific heat (J/kgeÂ°C 
heat-transfer coefficient ( ~ 1 r n . 0 ~ )  
height of a rectangular slab (m) 
Bessel function of ith order 
thermal conductivity (W/mÂ°C 
length of rectangular slab or cylinder (m) 
Biot modulus NBI = hR/k (for cylinder) or NBI = hL/k (for slab) 
Fourier modulus NFo= a t R 2  (for cylinder) or Npo = at/L2 (for slab) 
heat flux (w/m2) 
internal heat generation rate (Wrn3) 
radial distance from cylinder centre (m) 
radius of cylinder (m) 
time (s) 
temperature (OC) 
coordinates (m) 

Greek symbols 
a thermal diffusivity a = kl(pc) (rn2/s) 
5 penetration depth or thickness of an infinite slab (m) 



A differences between FEAT predictions and reference solutions (%) 

y, constant in thermal conductivity formulae 
9 angular coordinate 

P density (kg/m3) 

superscripts 
(I), (2) in region 1 or region 2 

subscripts 
0, i initial 
s,w at cylinder surface or slab wall 
c at centreline or centre plane 
1,2 in region 1 or region 2 
e at cylinder end 
f fluid 
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Table 1 Validation Matrix: Scenario-to-Phenomenon 

Scenario 

scenario 1 : peak pellet temperature 
during end flux peaking 

scenario 2: sheath-bearing pad heat 
transfer 

1 scenario 3: heat transfer in graphite disc 
fuel 

scenario 4: pellet temperature with or 
without pellet bottoming 

Phenomenon 

1 

2 
3 
4 
5 

1 

heat conduction in cylindrical coordinate system 

multiple bodies with gaps 
variable thermal conductivity (temperature dependent) 
time-dependent internal heat generation 
convective boundaries 

heat conduction in Cartesian coordinate system 

2 
3 
4 
5 
6 
7 

1 

multiple bodies withgaps 
two-dimensionaltemperatureprofiles 
variable thermal conductivity (temperature dependent) 
surface flux 
adiabatic boundaries 
convective boundaries 

heat conduction in cylindrical coordinate system 

2 
3 
4 

I 5 
, 6 
7 

1 

I 

multiple bodies with gaps 
two- dimensional temperature profiles 
variable thermal conductivity (temperature dependent) 
time-dependent internal heat generation 
adiabatic boundaries 
convective boundaries -- 
heat conduction in cylindrical coordinate system 

I 2 
I 3 
1 4 
1 5 
6 

multiple bodies with gaps 
one- or two- dimensional temperature profiles 
variable thermal conductivity (temperature dependent) 
time-dependent internal heat generation 
convective boundaries 



Table 2 Validation Matrix: Phenomenon-to-Data Set 

Phenomenon ! Data Set 
cylindrical coordinate system 

1 10, case 2-12, case 2-14, case 3-2, case 3-4. . 
Cartesian coordinate system 

5. 
6. 

7. 

case 1-3, case 1-4, case 1-6, case 1-8, case 2-2. case 2- 
3, case 2-7, case 2-9, case 2-10. case 2-12, case 2-14, 
case 3-2, case 3-4. 
case 1-6. case 2-12. case 2-14. case 3-2, case 3-4. 
case 1-3, case 2-3, case 3-2. case 3-4. 
case 1-8, case 2-10, case 2-14, case 3-2, case 3-4. 

1. 

2. 
3. 
4. 

1 1 3- 1. case 3-3. 

heat conduction in cylindrical coordinate 
system 

multiple bodies with gaps 
two- dimensional temperature profiles 
variable thermal conductivity 
(temperature dependent) 
time- dependent internal heat generation 
adiabatic boundaries 

convective boundaries 

case 2-9, case 2- 14. 
case 1-4, case 1-6, case 1-8, case 2-2, case 2-7, case 2-9, 
case 2-10, case 2-12, case 2-14, case 3-2, case 3-4 
case 1-4, case 1-6, case 2-2, case 2-3, case 2-9, case 2- 

case 1-1. case 1-2, case 1-5, case 1-7, case 1-10, case 2- 
1, case 2-4, case 2-5, case 2-6, case 2-8, case 2-1 1, case 

1. heat conduction in Cartesian coordinate 
system 

2. 
3. 
4. 

5. 

multiple bodies with gaps 
two- dimensional temoerature orofiles 

6. 

7. 

case 1-5, case 2- 1 1, case 3-3. 
case 1-2. case 1-10. case 2-4. case 3- 1. case 3-3. 

variable thermal conductivity 
(temperature dependent) 
surface flux 

case 1-7. case 1-10, case 2-5, case 3-1, case 3-3. 

case 1-10. case 2-5. case 3-3. 
adiabatic boundaries 

convective boundaries 

case 1- 1, case 1-5, case 1-7, case 1-10, case 2-1, case 2- 
5, case 2-6, case 2-8, case 2-1 1, case 3-3. 
case 1 - 1. case 1-5, case 1-10, case 2- 1, case 2- 1 1, case 
3- 1. case 3-3. 



Table 3 Feature-based Test Matrix 

Transient 1 

Cartesian 
coordinate system 

- 
Feature 

axisvmmetric 
cylindrical 

coordinate system 
(r.z) 

Steady-State 

1 1 coordinate system 1 coordinate system 1 

ax1 symmetric 
cylindrical 

plane 
Cartesian 

case 2-5, case 2-6 
case 2-8, case 2- 1 1 

(1). convergence 
(2). heat conduction 

case 4-3 
case 2-2, case 2-3 
case 2-7, case 2-9 
case 2-10,case 2- 12 
case 2- 14 
case 2-7, case 2- 12 

(r,z) 
case 4- 1 
case 1-3, case 1-4 
case 1-6, case 1-8 
case 3-2, case 3-4 

case 2-6, case 2- 1 1 I 

k y )  

case 4-2 
case 1- 1, case 1-2 
case 1-5, case 1-7 
case 1- 10, case 3- 1 
case 3-3 

(3). internal heat source or case 1-6, case 1-8 
sink 1 case 3-2. case 3-4 

case 2-9, case 2- 14 (4). time-dependent internal 
heat source or sink, 

case 2-8 I n/a 

case 2- 12, 
case 2- 14 
case 2- 10, 
case 2- 14 
case 2-3 

n/a 

(5). gap/multiple bodies. 

(6). variable properties k ,  
C ,  etc. 
(7). Two-dimensional 
profiles 
(8). Adiabatic BC* 

(9). Surface flux 

case 2- 1 1 I 
case 2-5 I 

Case 1-6, case 3-2 
case 3-4 
case 1-8, case 3-2 
case 3-4 
case 1-3, case 3-2 
case 3-4 
case 1-4, case 1-6 
case 1-8, case 3-2 
case 3-4 
case 1-4 

case 2-4 P 

case 1-5, case 3-1 
case 3-3 
case 1-7. case 1- 10 
case 3- 1, case 3-3 
case 1-2, case 1- 10 
case 3- 1, case 3-3 
case 1 - 1, case 1-5 
case 1-7. case 1-10 
case 3-3 
case 1-10, case 3-3 

case 2-2, case 2-7 
case 2-9, case 2- 10 
case 2- 12.case 2- 14 

case 2- 1, case 2-5 
case 2-6, case 2-8 

case 2-5 case 2-3 

case 2-8 

I I I 

(10). Surface temperature 1 case 1-3, casel-8 1 case 1-2, case 1-7 1 -- 

case 2-7 

case 2-2, case 2-3 
case 2-9, case 2- 10 
case 2- 12,case 2- 14 
case 2-3 

(1 1). Convective BC 

(12). Central hole 

case 2- 1, case 2- 1 1 case 1-4, case 1-6 
case 3-2, case 3-4 

case 1-4 

case 2- 13 

case 1- 1, case 1-5 
case 1- 10, case 3- 1 
case 3-3 
n/a 

( 13). Polar coordinate 
system (r,6) 
(14). heat generation in 
pellets 
(15). Thermal conductivity 

case 2- 14 

case 1-9 

case 1 - 13, case 3-2 
case 3-4 

of U02 
(16). Thermal conductivity 

case 1-1 1 

n/a 

n/a 

case 1- 12 1 
of Zircaloy 
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* k is thermal conductivity of material. Cp is specific heat of material. 
BC is boundary condition(s). series 1 : steady-state capabilities. 
series 2: transient capabilities. series 3: comparison with measurements. 
series 4: convergence test. n/a: not aoolicable. 
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Figure 1 Mesh Convergence of FEAT (Case 4-1) 
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Figure 2 Time Convergence of FEAT (Case 4-3) 



Figure 3 Heat Transfer in a Finite Cylinder (Case 1-3) 
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Figure 4 Two-dimensional Temperature Distribution (Case 1-3) 



Figure 5 Heat Transfer in Two Concentric Cylinders (Case 1-6) 
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Figure 6 Temperature Profiles (Case 1-6) 



Figure 7 Transient Heat Conduction in a Semi-infinite Slab (Case 2-6) 
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Figure 8 Temperature Profiles for Different Time Instants (Case 2-6) 
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Figure 9 Heat Conduction with Time-dependent Heat Generation (Case 2-9) 
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Figure 10 Temperature Profiles for Different Time Instants (Case 2-9) 
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Figure 11 Finite-element Mesh Used for Case 2-14 
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Figure 12 FEAT and ELOCA (mk5)-Predicted Centre1 i ne Temperature 



Figure 13 
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Overall Comparison between FEAT Predictions and Independent Solutions 
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Figure 14 End-Flux-Peaking-Induced Tear-Drop-Shaped Void (top: observed, bottom: 
predicted) case 3-2 
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Figure 15 End Flux Peaking Profile 

Figure 16 Thermocouple Measurement near S heath-Bearing-Pad Interface (case 3-3) 



Figure 17 Predicted Isotherms near Sheath B e a ~ g - P a d  Interface 

comparison of FEAT predictions with independent 
solutions for 27 cases 

Figure 18 Comparison of FEAT Predictions with Independent Solutions for 27 Cases 


