DETERMINATION OF REPRESENTATIVE CANDU FEEDER DIMENSIONS FOR ENGINEERING SIMULATOR

SEUNGYON CHO AND AJIT MUZUMDAR'

Institute for Advanced Engineering, Energy Systems Research Center Bldg. Ajou University, Suwon, 442-749, KOREA

ABSTRACTS

I

This paper describes a logic for selection of representative channel groups and a methodology for determination of representative CANDU feeder dimensions and the pressure drops between inlet/outlet header and fuel channel in the primary loop. A code, MEDOC, was developed based on this logic and methodology and helps perform a calculation of representative feeder dimensions for a selected channel group on the basis of feeder geometry data (fluid volume. mass flow rate, loss factor) and given property data (pressure, quality, density) at inlet/outlet header. The representative feeder dimensions calculated based on this methodology will be useful for the engineering simulator for the CANDU type reactor.

1. INTRODUCTION

The CANDU-6 reactor consists of 380 fuel channels with corresponding inlet and outlet feeders connected to the inlet and outlet headers. Transient thermohydraulic analysis of this geometry ideally requires that each channel and associated inlet/outlet feeder should be modeled. However, for engineering simulator purposes, it is neither practical nor necessary to model each individual channel, as several channels may be grouped together due to their similar powers, flows, elevation, etc.. The challenge is to find an appropriate number of channel groups with representative inlet/outlet feeder geometry for each group.

This paper presents a logic for the grouping of fuel channels and a methodology for the calculation of representative feeder dimensions for a grouping of channels, and presents some sample results for a CANDU-6 core. The emphasis is on the grouping logic and the methodology rather than on any particular correlation employed, or on the individual results obtained. In order to obtain representative feeder dimensions, certain criteria are used for guidance. These include the need to have representative fluid volumes, feeder resistance or mass flow rate, and channel elevation. A starting point is to group adjacent fuel channels on the basis of similar channel power. Since some channels may have quite different feeder geometry, the grouping of channel needs to be examined for any large deviations of feeder mass flow rate, fluid volume, etc. from the average for the group. The pressure drop for each channel inlet and outlet feeder is obtained using a method similar to that in the NUCIRC [1] code, but with some simplifying assumptions. For all of these purposes, a code MEDOC (Methodology for Equivalent FeeDer GeOmetry Calculation) was developed as described below.

2. SELECTION OF CHANNEL GROUPS

The CANDU-6 core channels are divided into several groups based on channel power. A selected channel power distribution is a time-average channel power using the 8-bundle shift fueling scheme shown in Wolsung Unit 3&4 PSAR of CANDU-6 [2]. Since the power distribution is symmetric, only half of 380 channels are considered.

^{*} Visiting Professor from AECL, CANADA

These channels can be divided into several groups based on the standard deviation of channel powers. These groups are composed of adjacent channels. The channel group selection logic is as follows:

- 1) For the first stage of grouping, define an initial value of multiplication factor of standard deviation (fsd).
- 2) Calculate average (\overline{x}) and standard deviation (||x||) of the channel powers (x_i) for a group.
- 3) Divide a channel group into 3 groups based on the defined standard deviation range.
 - If $|\mathbf{x}_i \overline{\mathbf{x}}| \le (\mathbf{fsd}) \cdot ||\mathbf{x}||$, set group $1 = \mathbf{x}_i$.
 - If $|\mathbf{x}_i \overline{\mathbf{x}}| > (\text{fsd}) \bullet ||\mathbf{x}||$, and $\mathbf{x}_i \overline{\mathbf{x}} > 0$, set group $2 = \mathbf{x}_i$.
 - If $|\mathbf{x}_i \overline{\mathbf{x}}| > (\mathbf{fsd}) \bullet ||\mathbf{x}||$, and $\mathbf{x}_i \overline{\mathbf{x}} < 0$, set group $3 = \mathbf{x}_i$.
- 4) If the latter two cases above apply (i.e. the channel powers of a group in an arbitrary stage of grouping are not within the range of standard deviation of the group), then define a new value of fsd (= fsd + dfsd), and go to the next stage. Where dfsd is an increment of multiplication factor for the next stage of grouping.

I

5) Repeat 2) through 4), until all of the non-grouped channel powers are located within the range of standard deviation of the newly divided group.

The tree structure of the grouping used in this logic is shown in figure 1. Based on this logic, standard deviations of the representative parameters are calculated in each divided group. Among these values maximum values of each representative parameter can be obtained. For several combinations of dfsd and the initial value of fsd, maximum values are estimated and shown in table 1. In this table, the number of the channel groups for each combination is also shown. As the values of fsd and dfsd increase, the number of channel groups decreases. Among the several combinations of fsd and dfsd, as an example case, is chosen a combination of fsd=0.1 and dfsd=1.0, which is shown as a highlighted row in table 1. The number of groups of this case is eight, and these channel groups are shown in core map, as shown in figure2. As well as the number of channel per each group, the average values and standard deviations (%) of representative parameters of each group are shown in table 2. Actually, group number G7 and G8 are not channel group, but single channel itself.

3. CALCULATION OF AVERAGE FEEDER PRESSURE DROP

In order to calculate the average feeder pressure drop for each channel group, pressure drop was first calculated for each channel feeder section, using an algorithm developed in the MEDOC code. The following simplifying assumptions were employed: 1) bends and elbows are located in the section near the header of the feeder; 2) pressure drop due to area change is considered in the section near the fuel channel of the feeder; 3) fluid density and viscosity are functions of temperature only; 4) pressure drop due to gravity is neglected.

3.1 Inlet Header to E/F (Inlet Feeder)

Since the flow in a channel of the inlet feeder is liquid only, two-phase flow multiplier is assumed not to be considered in the inlet feeder. The total pressure drop $(\Delta P_{t,in})$ for each feeder section is mainly composed of frictional $(\Delta P_{t,in})$, acceleration $(\Delta P_{a,in})$ and area change $(\Delta P_{c,in})$ pressure drop, neglecting gravitational pressure drop, as follows:

where

$$\Delta P_{tin} = \Delta P_{fin} + \Delta P_{a,in} + \Delta P_{c,in}$$
[Pa] (1)

$$\Delta \mathbf{P}_{f,in} = \frac{1}{2} \overline{\rho} \left(\frac{4 \, \dot{m}}{\pi \, \overline{\rho} \, D^2} \right)^2 \left[f \, \frac{L}{D} + K \right] \tag{2}$$

$$\Delta \mathbf{P}_{a,in} = \left(\frac{4 \ \dot{\mathbf{m}}}{\pi \ \mathbf{D}^2}\right)^2 \left[1/\rho_e - 1/\rho_i\right] \tag{3}$$

$$\Delta \mathbf{P}_{c,in} = \frac{1}{2} \overline{\rho} \left(\frac{4 \, \dot{\mathbf{m}}}{\pi \, \overline{\rho}} \right)^2 \left[\frac{1}{\mathbf{D}_2^4} - \frac{1}{\mathbf{D}_1^4} \right] \tag{4}$$

where p_e and p_i are the density at exit and inlet position of each section of the feeder, and subscript 1 and 2 means section 1 and 2 of the inlet feeder (see figure 3). The pressure drop in the bends and elbows is included in the frictional pressure drop through the loss factor K. The friction factor, f, is evaluated using the Colebrook correlation [3] given by:

$$\frac{1}{\sqrt{f}} = -2 \log\left(\frac{\varepsilon / D}{3.7} + \frac{2.51}{\text{Re}\sqrt{f}}\right)$$
(5)

where ε is feeder roughness, D is feeder diameter and their units are [m], and Re is Reynolds number given by Re = $(4 \text{ m})/(\pi \mu D)$.

In order to calculate total pressure drop of an inlet feeder, unknown pressures at position 2 and 3 ($P_2 \& P_3$) are estimated based on the given inlet header pressure P_1 , and a constant fluid density ρ_1 dependent only upon the inlet header temperature T_1 . The average pressure drop in a group of channels of the inlet feeder is obtained as follows:

$$\overline{\Delta P_{t,in}} = \frac{1}{N} \sum_{i=1}^{N} \Delta P_{t,in}(i)$$
[Pa] (6)

where $\Delta P_{Lin}(i)$ is the pressure drop in each inlet feeder.

3.2 Outlet Header to E/F (Outlet Feeder)

Since the flow in the outlet feeder has some steam quality, a two-phase multiplier, ϕ^2 , is used for pressure drop calculation. The total pressure drop ($\Delta P_{t,out}$) for one channel in the outlet feeder is mainly composed of frictional in straight pipe ($\Delta P_{f,out}$), frictional in bends and elbows ($\Delta P_{b,out}$), acceleration ($\Delta P_{a,out}$) and area change ($\Delta P_{c,out}$) pressure drop, neglecting gravitational pressure drop, as follows:

$$\Delta P_{t,out} = \Delta P_{f,out} + \Delta P_{b,out} - \Delta P_{a,out} + \Delta P_{c,out}$$
 [Pa] (7)

where

$$\Delta P_{f,ou:} = \phi^2(\bar{x}, \bar{P}) \frac{1}{2} \bar{\rho} \left(\frac{4 \, \dot{m}}{\pi \, \bar{\rho} \, D^2} \right)^2 \left[f \frac{L}{D} + K \right]$$
(8)

$$\Delta P_{t,out} = \phi_b^2(\bar{x}, \bar{P}) \frac{1}{2} \bar{\rho} \left(\frac{4 \, \dot{m}}{\pi \, \bar{\rho} \, D^2} \right)^2 [K]$$
(9)

$$\Delta P_{a,out} = \left(\frac{4 \text{ m}}{\pi \text{ D}^2}\right)^2 \left[\left(\frac{x \rho_f + (1-x)\rho_g}{\rho_f \rho_g}\right)_e - \left(\frac{x \rho_f + (1-x)\rho_g}{\rho_f \rho_g}\right)_i \right]$$
(10)

$$\Delta \mathbf{P}_{c,out} = \frac{1}{2} \overline{\rho} \left(\frac{4}{\pi} \frac{\dot{\mathbf{m}}}{\rho} \right)^2 \left[\frac{1}{D_1^4} - \frac{1}{D_2^4} \right]$$
(11)

where subscript e and i means exit and inlet position in each section of the outlet feeder, respectively (see figure 4). Note that in Eq. (9) since L/D for elbows and bends are unknown, it is assumed to be much less than K, i.e. $L/D \ll K$.

The two-phase flow multiplier for the outlet feeder is evaluated using the Fitzsimmons correlation [4] given by:

$$\phi^{2}(\bar{\mathbf{x}},\bar{\mathbf{P}}) = 1 + 0.65 \,(\,\phi_{MN}^{2}(\bar{\mathbf{x}},\bar{\mathbf{P}}) - 1) \tag{12}$$

where $\phi_{MN}^2(\overline{x}, \overline{P})$ is the Martinelli-Nelson two-phase multiplier[1]. The two-phase pressure drop multipliers in bends and elbows for the outlet feeders are treated differently[1]:

$$\phi_{b}^{2}(\overline{\mathbf{x}},\overline{\mathbf{P}}) = \mathbb{C}\left[\phi^{2}(\overline{\mathbf{x}},\overline{\mathbf{P}})\right]^{n}$$
(13)

where C and n are constants depending on the elbow or bend geometry. Typical values of C and n are 1.07 and 1.27.

In order to calculate total pressure drop in the outlet feeder, unknown pressures and steam qualities at position 2 and 3 (P₂, P₃, x_2,x_3) are estimated iteratively, based on the pressure and quality (P₁, x_1) and the density $\rho_1(P_1,x_1)$ at the outlet header, assuming that enthalpy change in the outlet feeder is negligibly small. The average pressure drop in a group of channels of the outlet feeder is obtained as follows:

$$\overline{\Delta P_{t, \text{out}}} = \frac{1}{N} \sum_{i=1}^{N} \Delta P_{t, \text{out}}(i)$$
(14)

where $\Delta P_{t,out}(i)$ is the pressure drop in each outlet feeder.

4. DETERMINATION OF REPRESENTATIVE CANDU FEEDER DIMENSIONS

The equivalent feeder dimensions, i.e., a single equivalent diameter and length of the inlet and outlet feeders in each channel group are derived based on the average parameters given in Table 2 above, using the methodology described below:

4.1 Equivalent Inlet Feeder Diameter and Length (Din, Lin)

The pressure drop for a single equivalent diameter and length for each channel group is composed of frictional and acceleration pressure drop,

$$\overline{\Delta P_{t,in}} = \frac{1}{2} \overline{\rho}_{in} \left(\frac{4 \overline{m}}{\pi \overline{\rho}_{in} D_{in}^2} \right)^2 \left[f(D_{in}) \frac{L_{in}}{D_{in}} + \overline{K}_{in} \right] + \left(\frac{4 \overline{m}}{\pi D_{in}^2} \right)^2 [1/\rho_3 - 1/\rho_1] \quad (15)$$

where the average density, $\overline{\rho}_{in} = (\rho_1 + \rho_3)/2$, is estimated from the densities ρ_1 and ρ_3 at inlet header and fuel channel inlet, respectively (in this case a constant). The equivalent feeder length, L_{in} , can be eliminated using the fluid volume relation,

$$\overline{\mathrm{V}_{\mathrm{in}}} = \frac{\pi}{4} \mathrm{D}_{\mathrm{in}}^2 \mathrm{L}_{\mathrm{in}} \tag{16}$$

giving an expression:

$$f(D_{in}) = C_1 D_{in}^7 - C_2 D_{in}^3$$

$$C_1 = \overline{\Delta P_{t,in}} \quad \pi^3 \overline{\rho}_{in} / (32 \ \overline{m}^2 \ \overline{V_{in}}),$$

$$C_2 = \pi (\overline{K_{in}} + 2 \ \overline{\rho}_{in} [1/\rho_3 - 1/\rho_1]) / (4 \ \overline{V_{in}})$$
(17)

where

Also, friction factor f is related implicitly to D_{in} from the Colebrook correlation[4]:

$$\frac{1}{\sqrt{f(D_{in})}} = -2 \log \left(\frac{\varepsilon / D_{in}}{3.7} + \frac{2.51}{\text{Re } \sqrt{f(D_{in})}} \right)$$
(18)

where $Re = 4 \overline{m} / (\pi \overline{\mu} D_{in})$, and $\overline{\mu} = (\mu_1 + \mu_3)/2$. From above two equations, the two unknowns, namely, friction factor $f(D_{in})$ and equivalent diameter D_{in} are determined numerically. Finally, the equivalent length L_{in} was evaluated from Eq. (16).

4.2 Equivalent Inlet Feeder Diameter and Length (Dout, Lout)

The single equivalent outlet feeder diameter and length for a channel group is determined by the same method as that used for calculation of the equivalent inlet feeder diameter and length. Using the following three equations for pressure drop, fluid volume and friction factor relations, the three unknown variables D_{out} , L_{out} , and $f(D_{out})$ can be evaluated:

$$\overline{\Delta P_{t, \text{out}}} = \phi^{2}(\overline{x}, \overline{P}) \ \overline{\rho}_{\text{out}} \left(\frac{4 \overline{m}}{\pi \ \overline{\rho}_{\text{out}} D_{\text{out}}^{2}}\right)^{2} [f(D_{\text{out}}) \ \frac{L_{\text{out}}}{D_{\text{out}}} + \overline{K_{\text{out}}}] + \left(\frac{4 \overline{m}}{\pi \ D_{\text{out}}^{2}}\right)^{2} \left[\left(\frac{x \rho_{f} + (1 - x)\rho_{g}}{\rho_{f} \ \rho_{g}}\right)_{1} - \left(\frac{x \rho_{f} + (1 - x)\rho_{g}}{\rho_{f} \ \rho_{g}}\right)_{3}\right]$$
(19)

$$\overline{V_{\text{out}}} = \frac{\pi}{4} D_{\text{out}}^2 L_{\text{out}}$$
(20)

$$\frac{1}{\sqrt{f(D_{out})}} = -2 \log\left(\frac{\varepsilon / D_{out}}{3.7} + \frac{2.51}{\text{Re }\sqrt{f(D_{out})}}\right)$$
(21)

where the average properties of quality(\overline{x}), pressure(\overline{P}) and density($\overline{\rho}_{out}$) are estimated from the values at the positions of outlet header and fuel channel exit, such as: $\overline{x} = (x_1 + x_3)/2$; $\overline{P} = (P_1 + P_3)/2$; $\overline{\rho}_{out} = (\rho_1 + \rho_3)/2$. Therefore, the equivalent outlet feeder diameter and length are obtained based on the average properties for the outlet feeder in each channel group.

5. **RESULTS AND DISCUSSION**

Based on the methodology discussed above, the equivalent feeder diameters and lengths obtained for each channel group are shown in Table 3. In this table, the average pressure drop and the standard deviation for each group are also summarized. Note that, in general, the higher power inner channels tend to have larger equivalent diameter in both inlet and outlet feeders. The equivalent feeder lengths vary as they are largely dependent on the location in the core. The average inlet pressure drop is much smaller than the outlet pressure drop, but the standard deviations of each pressure drop show the reverse phenomena.

The average fuel channel exit quality for all channel groups is 2.88%, which is very close to the design value of 3%. The average ratio of channel/mass flow rate for all channel groups is in the range of $238.3\pm5.2\%$. The small deviation indicates that mass flow rate is proportional to channel power.

6. CONCLUSION

This paper mainly concentrated on the development of a channel grouping logic and a methodology for calculating equivalent inlet and outlet feeder diameter and length of a selected group of channels in a CANDU reactor core. The methodology includes an estimation of representative parameters (pressure, density, quality) at the fuel channel inlet and exit, based on given conditions in the inlet/outlet headers.

The methodology was applied to a set of 8 channel groups in a symmetrical half-core, and the equivalent feeder dimensions for all groups were calculated. The standard deviations of representative parameters for a channel group were also calculated. The estimated representative feeder diameter and length will be useful for the engineering simulator for a CANDU type reactor.

REFERENCES

- (1) CHEXAL, B., "NUCIRC: A Computer Code for Nuclear Heat Transport Circuit Thermohydraulics Analysis," Atomic Energy of Canada Limited, TDAI-116, (1977).
- (2) "Wolsung Nuclear Power Plant Units No.3&4 Preliminary Safety Analysis Report," Vol.4, 1992.

3.45

- (3) COLEBROOK, C.F., "Turbulent Flow in Pipes with Particular Reference to the Transition Region between Smooth and Rough Pipe Laws," J. Inst. Civil Engs., 1939.
- (4) FITSZSIMMONS, D.E., "Two-Phase Pressure Drop in Piping Components," Manford Atomic Product Operation Report, HW-80970, 1964.

Initial Value of fsd	dfsd	Number of Groups	Power (%)	Maşs (%)	Feeder Blevation (%)	Injet Feeder Volume (%)	Outlet Feeder Volume (%)	Inlet Loss Factor (%)	Outlet Loss Factor (%)
0.1	0.1	68	33.4	33.9	33.3	63.1	61.2	39.0	34.2
	0.5	20	6.2	6.7	6.4	41.0	45.3	37.5	26.4
	1.0	8	11.7	12.0	11.7	41.6	36.0	32.2	25.2
0.3	0.0	60	34.9	36.2	35.6	51.0	46.0	37.6	39.6
	0.1	41	3.9	5.3	4.5	45.6	47.5	39.7	30.2
	0.5	14	8.0	8.1	7.9	43.7	40.2	35.7	30.5
	1.0	7	12.8	13.1	13.0	43.6	40.8	33.3	25.0
0.5	0.0	37	5.9	7.1	5.9	43.5	45.7	39.3	31.6
	0.1	31	5.9	7.1	5.9	43.1	42.4	36.0	26.4
	0.5	11	9.9	10.1	10.0	43.9	36.2	33.4	25.2
	1.0	7	13.9	13.7	14.2	41.9	37.3	34.1	25.4
0.7	0.0	27	8.9	10.3	8.7	37.8	59.4	46.5	30.6
	0.1	20	8.9	10.3	8.7	44.8	36.9	35.7	30.6
	0.5	10	10.1	10.9	10.5	44.2	36.9	33.2	29.0
	1.0	6	13.6	13.7	13.8	44.0	36.9	33.2	25.3
1.0	0.0	8	11.8	13.1	11.6	41.0	39.2	37.6	32.8
	0.1	8	11.8	13.1	11.6	47.5	38.2	32.7	23.6
	0.5	5	11.8	13.1	11.6	37.6	35.3	37.6	32.8
	1.0	4	11.8	13.1	11.6	40.6	36.1	33.6	25.1

TABLE 1 MAXIMUM VALUE OF STANDARD DEVIATIONS OF REPRESENTATIVE PARAMETERS AMONG THE CHANNEL GROUPS FOR SEVERAL COMBINATIONS OF FSD AND DFSD

Name of , Group	Number of Channels per Group	Channel Power (kW) (±%)	Mass Flow Rate, m (kg/s) (±%)	Feeder Elevation (m) (±%)	Inlet Fluid Volume Vin 7 (mi) (x10 ⁻³	Outlet Rhid Volume, V_{out} (m ²)(x $[0^3)$	Inlet Loss Factor,	Outlet Loss Rector ₄
Gl	87	6376 (+2 1)	26.85	6.36	27.59	61.05	0.37	1.61
G2	47	4072	16.59 (+12.0)	4.10	17.44	34.35	0.44	(13.0) 1.94 (+23.7)
G3	6	6593 (±0.1)	27.13 (±2.0)	6.64 (±0.3)	32.94 (±5.4)	68.89 (±4.0)	0.39 (±4.6)	1.70 (±4.8)
G4	31	5604 (±4.6)	23.49 (±6.1)	5.62 (±5.0)	20.34 (±29.9)	46.58 (±36.0)	0.38 (±29.8)	1.65 (±21.2)
G5	5	5103 (±1.7)	21.51 (±5.0)	5.15 (±1.4)	26.45 (±6.3)	60.18 (±3.6)	0.50 (±6.3)	2.05 (±7.9)
G6	12	3100 (±3.8)	12.83 (±4.5)	3.10 (±5.6)	13.66 (±32.2)	31.89 (±35.7)	0.55 (±32.2)	2.25 (±25.2)
67	1	4925 (±0.0)	20.89 (±0.0)	4.99 (+0.0)	17.06 (±0.0)	29.44 (±0.0)	0.32 (±0.0)	1.60 (±0.0)
G8	1	2548 (±0.0)	11.21 (±0.0)	2.50 (±0.0)	18.35 (±0.0)	35.33 (±0.0)	0.74 (±0.0)	3.13 (±0.0)

Anna Marca

 TABLE 2
 AVERAGE VALUES AND STANDARD DEVIATIONS OF REPRESENTATIVE PARAMETERS OF EACH GROUP

Name of Group	Inlet Diameter, Din, (m) (x10-2)	Inlet Length, L _{in} (m)	Outlet Diameter, Dout: (m) (x10 ⁻²)	Outlet Length; Lou (m)	Inlet Pressure Drop, ΔPt, in (KPa), (±%)	Outlet Pressure Drop, ΔPt, out (kPā), - <u>1</u> (±%)	Chantel Ban Ottality (%) (±%)	Channel Power/Mass Plow Rate (kW s/kg)
G1	5.76	10.57	7.28	14.67	154.6 (±43.3)	297.1 (±25.3)	3.04 (±7.0)	237.5
G2	4.46	11.18	5.93	12.43	228.0 (±54.6)	291.4 (±28.1)	3.01 (±7.5)	245.4
G3	6.81	9.04	7.31	16.42	63.2 (±40.7)	321.2 (±15.1)	2.93 (±5.1)	243.0
G4	5.01	10.33	6.84	12.69	232.4 (±29.9)	285.5 (±22.0)	3.07 (±6.8)	238.6
G5	5.01	13.45	6.95	15.87	255.4 (±10.1)	277.9 (±15.0)	3.09 (±4.5)	237.2
G6	3.88	11.57	5.35	14.18	290.3 (±33.6)	320.1 (±19.9)	2.95 (±7.1)	241.6
G7	5.01	8.66	5.75	11.34	155.5 (±0.0)	441.2 (±0.0)	2.55 (±0.0)	235.8
G8	3.88	15.51	4.89	18.83	298.8 (±0.0)	477.4 (±0.0)	2.43 (±0.0)	227.3

TABLE 3 EQUIVALENT CANDU FEEDER GEOMETRY AND CHARACTERISTICS OF REPRESENTATIVE PARAMETERS

FIG. 1 TREE STRUCTURE FOR GROUPING BASED ON THE STANDARD DEVIATIONS OF REPRESENTATIVE PARAMETERS

a desta

FIG. 3 CONFIGURATION OF INLET FEEDER

~ J

-

-

FIG. 2 A CORE MAP FOR THE SELECTED GROUPS USED IN THIS ANALYSIS

.

