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ABSTRACT

The classical modal expansion technique has been applied to predict transient fuel and coolant
temperatures under on-power conditions in a CANDU fuel channel. The temperature profile across the fuel
peller is assumed to be parabolic and fuel and coolant temperatures are expanded with Fourier series. The
coefficient derivatives are written in state space form and solved by the Runge-Kuita method of fifth order.
To validate the presemt model. the calculated fuel temperatures for several sample cases were compared
with HOTSPOT-il. which empiovs a more rigorous finite-difference model. The agreement was found lo be
reasonable for the operational transients simulated The advantage of the modal method is the fast
compuiation speed for application 1o e real-ume system such as the CANDU simulator which is being
currently developed at the Institute for Advanced Engineering (IAE).

1. INTRODUCTION

A reliable thermo-hvdraulic model for the nuclear reactor core must have the capability of calculating
transient temperature distributicns in fuel rods as accurately as possible under various conditions such as
normal operation, operational upsets, and loss of coolant accidents. With respect to the CANDU nuclear
power plant real-time simulator being developed at IAE. it is also required that the thermo-hvdraulic
conditions for a number of fusl channels should be calculated simultaneously as economically as possible
for operational transienis including reactor trip.

Compared to pressurized water reactors. in the pressure-tube-type CANDU reactor core. the coolant
channels are separated from each other by pressure’calandria tubes (no channel-to-channel cross flow) so
the axial flow is dominant. Owing to such an axial flow dominance, CANDU reactor core
thermo-hy draulic analysis is usually performed separately for each channel or group of channels.

There have been a variety of models and numerical methods dealing with fuel-to-coolant transient
heat rtransfer problems for the CANDU core. In the following. the major existing models will be briefly
reviewed:

The HOTSPOT-1l [1] code is a detailed fully implicit finite-difference two-dimensional cyvlindrical
model of a CANDU fuel bundle. that has a lot more capabilitv than is required for the real-time
simulator. It is wusually used as a slave tool for detailed information on fuel bundle and pressure
tube/c.iandria tube temperatures and requires the heat generation rate and coolant boundary conditions as
input parameters. The demerit of the method is that the finite difference scheme may be to0
time-consuming for the real time simulator model if temperatures in each fuel bundle are required.

The fuel model in system thermal-hvdraulic codes such as SOPHT [2] is essentially an explicit 1-D
version of the HOTSPOT single-pin model, usually emploving only about 5 radial nodes in the fuel. gap.
and sheath. It has been found w0 be fairly accurate based on swudies comparing SOPHT versus
HOTSPOT-II. Although the solution method is very straight-forward. numerical stability requirements imply
that the explicit method may or may not be more time-consuming than the fully implicit method.

The fuel model in the CHAN code [3] is based on an elecrrical analogue. The equations are relatively
simple, and probably very fast to solve as no exponents are involved. The problem is that the model was
originally derived for decay heat conditions during LOCA scenarios, assuming a flat temperature
distribution across the fuel peilet. It has been found{l] that the current CHAN model is fairly accurate for
poor cooling conditions. under full or decay power, during which a fairly flat temperatre gradient across
the fuel is maintained.

The fuel model deveioped for use with the DSNP code [4] is based on the FUELPIN code [3]. in
which 2 lumpead parameter apcroach :s used. It is assumed that the coolan: boundary conditions and heat
transfer coefficient are obtained separatzly. However, this model has limitations for fast transients such as a



reactor trip.

The basic idea of the modal heat transfer model is that parameters such as the heat generated in the
fuel, the fuel temperature, and the coolant temperature, can be represented as a Fourier series expansion.
By writing the heat balance equations for the fuel and coolant, then substituting the Fourier series
expansions, and finally integrating over the channel length, a series of linear differential equations can be
obtained for the Fourier coefficients. The solution of these equations allows the fuel and coolant
temperatures to be determined as a function of time. One of the advantages of this model is that it allows
fuel and coolant temperatures for all axial locations in a channel to be determined simultaneously. Another
useful aspect of the method is that, with appropriate modifications, it allows a calculation of the channel
boiling length, the average channel quality, and the channel outlet quality. These are important for
operational transients where fuel dryout and void reactivity may be important considerations.

The modal method, if properly modified and improved, appears very promising for operational
transients. Carslaw and Jaeger [6] noted that the Fourier expansion method is completely adequate for
problems in finite regions. In addition, since this method produces fuel and coolant temperatures for an
entire channel simultaneously, it may be very economical to use for a three dimensional CANDU reactor
core thermo-hydraulic model within the real-time engineering simulator model.

The modal fuel channel heat transfer model was developed for the Bruce A CANDU nuclear training
simulator [7]. However, the major limitation of the original modal method is that it assumes that the
sheath temperature is always equal to the fuel average temperature, which may not be adequate for the
present purpose. In this paper, therefore, the existing modal analysis method has been extended to account
for the temperature distribution in the fuel, gap, and sheath. Simplified analysis has been camried out
neglecting circumferential temperature variations, and the fuel temperature profiles obtained are compared
with HOTSPOT-11 code predictions.

2. ANALYTICAL MODEL

2.1 Goveming Energv Balance Equations

The governing heat balance equations for the radially averaged fuel temperature and coolant
temperatures for the CANDU fuel pin and channel geometry shown in Fig. 1 can be formulated from an
energy balance on an elementary length of the fuel channel using the following basic assumptions:

(1) No boiling;

(2) Negligible axial heat conduction:

(3) Parabolic temperature profile across the fuel pellet [the fuel element is in the thermally thin
conduction regime (see Ref. 8)]:

(4) No circumferential temperature variations:

(3) Constant thermo-physical properties:

(6) Radially uniform volumetric heat generation rate;

(7) Negligible heat transfer to the moderator; and

(8) Negligible thermal inertia of fuel sheath compared to the fuel pellet.

Writing an energy balance and rearranging gives:

aTHL2) g (t2) _ _hSs
Y = Fefor + [Tt 2)—Ts(t 2)] prc,rAr Q)

aTAt ) aTL(t2) hSs
—57— + V=5 = [ Ts(t 2)— Tt Z)]——p CucAs 2

where T is the temperature, ¢ is the time, ¢ is the volumetric heat generation rate in fuel, p is the
average density, ¢, is the specific heat capacity, # is the onvective heat transfer coefficient from sheath to
coolant, ¥ is the coolant velocity, and the subscrips F, C, and S denote fuel average, coolant, and sheath
outer surface, respectively.

The assumption that the temperature profile across the fuel pellet has a parabolic shape gives the
following equation for the average fuel temperature (from here (t,z) will be left out for temperatures):

Tr = 3(Ta + Tr) G)
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where T¢; and Tr, are the fuel centerline and fuel outer surface temperatures, respectively.

Equation (3) is a key assumption which simplifies the derivation of the energy equation. Note that the
average fuel temperature 7r is identical to the temperature at approximately 70% of the fuel radius for a
parabolic profile.

Assuming the fuel sheath has negligible thermal inertia compared to the fuel pellet, we can equate the
total heat loss from the fuel surface to the instantaneous heat conducted across the fuel pellet to obtain:

rs

WTs — T¢ 5 = k(T — Tr,) @)

where rs is the fuel sheath outer surface radius and kr is the thermal conductivity of the fuel pellet.

Similarly, relating the instantaneous heat flux across the fuel-sheath gap to the heat flux to the
coolant, we obtain:

b Tro - Tsi) = —h(Ts = Tc) 5)

where A, is the heat transfer coefficient through the gap and rr is the fuel pellet outer surface radius.

After eliminating T from Egs.(4) and (5), we obtain the following equation for Ty:

— 1 _ 1 4 )
Ts = Tc + hrs hrg Tr hrs hrs Tsi (6}

4kr * hgr e dkp herr

Equating the heat flux across the fuel sheath thickness &~ to the convective heat transfer to the
coolant gives the following equation for the sheath inner temperature:
hd .
Rei

Tg = Ts + (Ts — To) (7N

Substituting Eq.(7) into Eq.(6). we obrain:

Ts = (1 — )T+ kB T (8)
where the dimensionless parameter A is defined bv
- _ 1
”o= ’27’5 ) }27’5 " /26_4 ®
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We now define the following time constants:
PrCFAF
Te = = o 10a
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where 7. is the fuel time constant and 7¢ is the corresponding coolant time constant.
Substituting Eq.(8) into Egs.(1) and (2), we obiain
«97‘;(!.2) _ g’ (t z) = Tc(f,z)—TF(f.2>

ot loFCpF ’ Tr

(11a)
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The fuel and coolant temperatures, and heat generation rate can be expanded in Fourier series with

coefficients araft), bra(1), acaft), bea(t) and Caft), respectively over the period 2L (from -L to L) where L is
the channel length as follows:

Te(t,z) = ar(d) + gl [ap,.(t)cos( ni:rz) + bp,,(t)sin(—’-%z-)] (12a)
T(t2) = ac(t) + "Ej_.l [acn(t) cos(%) + bc,.(t)sin(—"f‘-z-)] (12b)

g (z,) = ’2)[ C\(H sin( "If"') (13)

L
Cn = £ [Tg (2. 0sin () 2z (14)

where an axially symmerric heat generation is assumed for simplicity, although an expansion in terms of
sines and cosines could easily be implemented for more general cases.

Substituting the above equations into Egs.(112) and (11b), integrating from -L to L gives the following
time derivatives for the Fourier coefficients ay, and a¢, respectively:

d

1 -

-‘Eapo(z‘) = 7= [ ac(d—ar(t) ] (15a)

L ooty = = [ ap(d—ac(d ] (15b)

dt Co T Fo Co

Substituting Egs.(12a) through (13) into Egs.(11a) and (llb), integrating from -L to after multipiving
by cosfnnz/L) gives the following time derivatives for the Fourier coefficients as, and ac., (n=/, 2, .., V),
respectively:

L oo(d = L [ aclH—ar(d ] (13¢)

4t Fn Te Cn Fn

d 1 aV -

acd = —— [arld—ac(n ] ~ S bea() (15d)

Repeating this procedure, but integrating from -L to L after multiplving by sin(nt/L) gives the
following time derivatives for the Fourier coefficients br, and bc,, respectively:

d _ G 1 _ .
dt bFn(t) . chpp h Tr [ bCu(t) bFn(t) ] (lje)
L b = = [ brld=ba(0 1 + PEL ac,( (13D

2.2 Steadv State Equations

Substituting z = 0 in Eq.(I12b), the following channel inlet boundary condition is obtained:

Tedd = ac(d + Zac( (1)

The steady state solution for any channel power state, i.e., initial conditions for the Fourier
coefficients, can be obtained by equating the time derivatives of Eq.(13) to zero to obtain:
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bra(0) = —chpF (17¢)
bea(0) = 0 (17d)
where 7T¢.(0) is the initial inlet temperature.
2.5 Transient Equations
When Eq.(16) is also substituted into Eqgs.(I3a) and (15b) to eliminate ac., we obtain:
Lorld) = —1; [ Tedd—aa(d—aad~agld—arld ] (152)
Lact = = [ Tedd—an(d=an(d—an(f—ac(n ] (15h)

Equations (13g) and (Ibh) together with Egs.(15c) through (15f) sholud be solved to obrtain the Fourier
coefficients as a function of time. Substitution of the Fourier coefficients into Eq.(12) allows the fuel and
coolant temperatures to be determined at any axial location as a function of time.

Considering only the first 4 Fourier Terms in Eq.(12). ie, N = 3, the system of equations for the
Fourier coefficients. a@s.. @i brn. @rw. aca. @nd bcn (n=1, 2. 3). can be arranged in the following form:

() = Ax() = Bu() (18)

where A and B are the coefficient matrices and x(1 is the solution vecior given by
X = [a,—a(z‘) dﬂ(f) bP.(!) an(f) b;.j,(f) ac,(f) aq(f) ba(f) aa(f) ba(t) ]T (19)

and the input vector ufy is
ulf) = [C(8) G Ci Tedn 17 (20)

The matrices A and B in Eq.(18) can be simply constructed by using Egs.(15¢)-(13h). and therefore,
they are not presented here. Note that. in principle, any number of Fourier terms may be considered using
this method. Equation (18) can be referred 1o as a state-space model in control theory and can be easily
solved by using MATLAB-Simulink [8]. a commercial scientific calculation software package mostlv used
in solving linearly time invariant (LTI) state-space models in control engineering. In the present paper the
model building has been done using the built-in graphical user interface which makes the programming
verv quick and convenient. This commercial tool has been used mostlv in order to provide a high
assurance of accuracy and to avoid time-consuming programming work. FIG. 2 shows the Simulink model
that is constructed which consists of the present state space model matrices A and B, and functions for
the calculation of temperatures at other radial positions. The solution method usad here is the well-known
Runge-Kuna method of fifth order and variable time mesh.

For verification of the present model by comparing it with the results of the HOTSPOT-II computer
code. the following procedure has besn used:

(1) Initialize the Fourier coefficients of the modal equations,

(2) Calculate the fuel and coolan: temperatures using the modal equations,

(3) Input history of thermal pcwer and coolan: temperatures at any axial location
from the modal method into HOTSPOT-II.

(4) Calculare the wansient temperature distributions in the fuel, gap and sheath



regions using HOTSPOT-II, and ,
(5) Compare the fuel centerline and fuel average temperatures from the two models.

3. RESULTS AND DISCUSSION

The steady state radial temperature profiles calculated by the present model and HOTSPOT-II at the
axial center of the channel are shown in FIG. 3. Typical simulation parameters used are shown in TABLE
1. The data presented in TABLE 1 corresponds to nominal full power data for 600 MWe CANDU nuclear
power plants. The simulated fuel element is that in the outer ring of a 37-element fuel bundle. The
agreement is seen to be excellent in FIG. 3.

Figure 4 shows the calculated initial axial profile of the fuel average and coolant temperatures using
the modal method, and the profile of the initial axial heat generation distribution in the steady-state prior
to the transient simulation.

In order to compare the present method with HOTSPOT-II results, the following three transient cases
are simulated using the two methods on an IBM personal computer 436DX2/66MHz:

(1) Step increase in heat generation from 100% to 110%,

(2) Linear reduction from 100% to decay heat level (7%) in 10 seconds (i.e., rate of -9.3%/sec), and

(3) Channel inlet temperature increase from 266.5 °C to 276.5 °C in 100 seconds

(i.e., rate of 0.1 “C/sec).

The thermo-physical properties, such as density, specific heat, flow velocity, and heat transfer
coefficients are held constant throughout the transient and a simple cosine power distribution about the
axial center with C; = 4.661x10° W/m’ C:> = C; = 0 is assumed. In this case, @in brm @cm ben With 1
greater than 1 are all zeros.

A variable time-step,size ranging from 0.001 to 0.1 second is used for the present modal method,
whereas, in HOTSPOT-il. a fixed standard time-step size of 0.05 second has been used. However. the
same convergence criterion, i.e. 1X10° has been used for the two methods. The standard recommended
number of radial nodes in the fuel (6 nodes), sheath (53 nodes), and gap (1 node) has been used.

3.1 Case (1

For the first case of a step increase in fuel heat generation rate from 100% full power to 110% full
power at 20 seconds, the fuel centerline and average temperature responses at the center of the channel (z
= L/2) calculated by the present model and HOTSPOT-II. the coolant temperature calculated by the present
method. and the input curve of volumemwic heat generation rate are shown in FIG. 3. In the case of the
fuel centerline temperature, the agreement is fairly good except that the temperature calculated by the
present method is a lintle higher than HOTSPOT-II during the transient period. This is due to the fact that
the present method assumes a radially parabolic temperature profile in the fuel region as in Eq.(3).
Therefore, the fuel centerline temperature changes with the same characteristic time as 7 of the fuel
average temperature. However, in HOTSPOT-II the characteristic time will be different for the different
radial fuel regions because it solves the finite-difference conduction equation accurately.

In the case of the fuel average temperature, the apparent difference between the present method and
HOTSPOT-Il is due to the nodal averaging method in HOTSPOT-II, where no account is taken of the
temperature profile through a radial fuel node. In actual fact, the rates of change of the two curves are
still very close to each other and the time constants are nearly the same.

Figure 6 shows the Fourier coefficients versus time in this case. The oscillatory behavior of b¢: can
be explained as follows: a fast increase in C, results in a fast increase of bs; in Eq.(15e), which gives a
fast increase in time derivative of &, at the current time step due to the positive sign of by in Eq.(15f).
This tends to increase the absolute value of ac; (ac: is negative as shown in FIG. 6) according to
Eq.(15d). At the next time step. this tends to decrease the value of b¢; according to the positive sign of
ac; in Eq.(15f), which will increase a¢; according to Eq.(13d). However, the amplitude of oscillation of
bey is very small.

3.2 Case (2)

The second case simulated is a fast reduction in fuel heat generation rate (such as a reactor trip) from
100% full power to decay heat level (about 7% full power) in 10 seconds. The time variation of the heat
generation rate is shown at the bottom of FIG. 7. The fuel centerline temperawre curves at z = L/2
calculated by the present model and HOTSPOT-Il are very close to each other. The speed of the
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temperature change is also slightly faster in the modal model, due to the same reasons as given
previously. The small difference between the two curves of fuel average temperatures from the present
mode! and HOTSPOT-II is also largely due to the nodal averaging method used in HOTSPOT-IL

The agreement between the two sample cases above shows that the assumption of a radially parabolic
temperature profile in the fuel throughout the transient is a reasonable assumption even for fast transients
resulting from rapid power changes.

3.3 Case (3

Figure 8 shows the calculated fuel centerline temperature versus time at z = L/2 for an inlet
temperature variation from 266.5 °C to 276.5 °C in 100 seconds. It is seen that the fuel centerline
temperature calculated by the present model rises slightly faster than in HOTSPOT-II. However, the
difference between the nwo methods is less than 2 °C. The difference in fuel average temperatures is again
largely due to the nodai averaging in HOTSPOT-IL.

The CPU times which have been obtained during the sample runs for the first case (simulation time is
100 seconds) using the present method and HOTSPOT-II are about 2 seconds and 19 seconds. respectively.
Considering that a part of the CPU time taken by the present model has been spent for the calculation of
coolant temperatures. it can be seen that the present modal method is much faster and more efficient than
a detailed finite-difference conduction model. Furthermore, the modal method can easily provide fuel and
coolant temperatures simultaneously for the entire channel as an analytical expression given by Eqg.(12).
whereas the detailed finite difference model has to be run at each axial location specified. For exampie. if
fuel temperatures are needed at each of the 13 bundle locations. the CPU time per fuel channel would be
reduced by a factor of approximately 260 using the modal method.

3.3 Test for Two-Phase Application

In order to test the applicability of the present model to the case when the coolant in the fuel channel
is two-phase. the channel is subdivided into subcooled region upstream of the boiling boundary and
two-phase (satwurated) region downstream. The time dependednt axial temperature profile of subcooled
coolant is calculated by the present model. and the coolant downstream of the boiling boundarv is assumed
to have a fixed saturation temperature, which, therefore. becomes the channel outlet temperature.

The test run for the reactor trip case for Wolsung 3&4 is compared with the results of SOPHT [9].
The tme history of the channe!l inlet end firting temperature calculated by SOPHT is used as a boundary
condition of the present model. ie.. T¢.(t) in Eq{20). The coolant velocity used (¥ = 10 mssec) is an
average of the nypical values for the single-phase and two-phase conditions in the CANDU 6 fuel channel.
The value of fuel-to-coolant heat wansfer coefficeint is different from that listed in TABLE 1 since the
coolant condition should be two-phase. and the volumetric heat generation rate is increased to 5.732 x 10°
W m’ to obatzin outlet qualinv of 1.74%.

Results of the simulation is shown in FIG. 9. It shows that the coolant temperature at the channel
outlet end fining calculated by present model is close to but somewhat slower than the result of SOPHT
[9]. This is because the present model does not consider system pressure (i.e., saturation temperature) drop
in the trip condition. And although the assumption of constant heat transfer coefficient mav be a crude
one. FIG. 9 shows that this assumption is justifiable in that we are mainly interested in the channel outlet
condition.

4. CONCLUSION

The classical modal expansion technique has beer modified to predict tansient fusl and coolant
temperatures for a number of sample cases. After comparing the present method with a more detailed cede
stoh as HOTSPOT-II for three cases such as a step increase in thermal power, a fast reduction in thermal
pcwer, and an inlet temperature ramp, it has been verified that the present modal method is reasonably
accurate and the calculation speed is significantly improved for operational tvpe transients.

Note that the assumption of constant thermo-physicz! parameters in the present method can be easily
relaxed by modifving the present hnearly ume invariant matrices. 4, B, and u# in the present state space
equations and feeding back the updated values of thermo-physical parameters such as density, specific heat,
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flow velocity, and heat transfer coefficients. The condition when the coolant is two-phase has been
considered by replacing the present model with a two-region model where the upstream subcooled region
is solved by the present model, and the downstream region is at a fixed coolant temperature, i.e.,
saturation temperature.

)
(6)
O

(3)
&)
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TABLE [. GEOMETRICAL AND THERMOPHYSICAL PARAMETERS USED

Parameter Value Unit
Coc 5974.3 Wkg-°C
CoF 0.317x 10’ Wikg-°C
Dr 12.154x 10 m
Ds 13.081x 10 m
h 31080 W/m’-°C
hy, 10000 Wim™-°C
ka 20 Wim-°C
b 32 W/m-°C
L 5.94 m
@ max 4.661x 10° Wim’

14 9.49 ) m/sec
S, 0.0445x 107 m

S 0.419x10° m
oc 737 kg/m’
OF 10.6 % 10 kg'm’
Tc 9.692 sec
TF 6.372 sec
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FIG. 7. FUEL CENTERLINE, AVERAGE. AND COOLANT TEMPERATURES AT Z=0.5L FOR
FAST REDUCTION OF HEAT GENERATION RATE FROM 100% FULL POWER TO
DECAY HEAT LEVEL (7% FULL POWER) AT A RATE OF -9.3% AS SHOWN AT THE
BOTTOM OF THE FIGURE - CASE (2)
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FIG. 8. VARIATION OF FUEL CENTERLINE, AVERAGE, AND COOLANT TEMPERATURES
AT Z=0.5L FOR RAMP INCREASE OF TEMPERATURE AT THE CHANNEL INLET
(Z=0) FROM 266.5 °C TO 276.3 °C IN 100 SECONDS - CASE (3)

15

MRy o B N ey ey e



Temperature [°C]

320

310 .............. .............. .............. ......... .............

300 |t o Channel Outlet (Present Model)

.| = = = Channel Outlet (SOPHT)
. | == = Channel inlet

290

280

270

260

250 |

240
0] 5 10 15 20 25 30 35 40 45 50

TIME [sec]

FIG.9. COMPARISION OF CHANNEL OUTLET END FITIING TEMPERATURES
BETWEEN PRESENT MODEL AND SOPHT SIMULATION FOR REACTOR TRIP

(V= 10m/sec, q,, =5.732x 10° Wm®, h=35314 W/m>-°C, AND OTHER
PARAMETERS ARE THE SAME AS LISTED IN TABLE 1)
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