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A MULTI-POINT KINETICS MODEL APPLIED TO THREE-DIMENSIONAL
NEUTRONIC TRANSIENT ANALYSIS

H. D. KIM and K. S. PARK

Institute for Advanced Engineering
Yongin P.O. Box 25, Kyungki-Do, 449-800, Korea

ABSTRACT

A computer code for solving the three-dimensional reactor neutronic iransient problems by a coupled
reactor kinetics method recently derived has been developed and for evaluationg its applicabilin: applied
1o 3-D kinetic benchmark problems. The performance of the method and code has been compared with
the results by the computer codes employing the direct fine and coarse mesh methods.

1. INTRODUCTION

The anaivsis of power distribution under normal transient operation as well as accident conditions in
large power reactors often requires the use of detailed space-time neuwon diffusion calculations.
Especially in CANDU reactor. the information of zonal power behaviors during normal operation is
impontant for reactor reguration.  Effots have been directed toward the use and development of
multi-dimensicnal few group transient diffusion programs. However. in large power reactors, full 3-D
analvsis bv directly solving the neurron difiusion equation requires large computing time even with
modem high speed computer. Therefore. simple methods requiring small computing time have been tried
and developed. The coupled reactor kinetics method’ chosen in this work belongs to such category.

Principle cbjective of this work is to make a 3-D neutronic model for simulator which fast computing
time as possible is dasirable and aimed at developing a model providing reliable solutions to rslevant
problems. The multi-point kinetics method' of the coupled reactor theory recently derived has been
chosen and a program developed. and for evaluating its efficiency in ‘simulator neutronic-model tested with
the rypical 3-D kinetics benchmark problems .

Model equations are exact kinetic equations for fission sources in the multi-coupled regions or reactors
with six delaved neumron precursor groups. The benchmark problems chosen are typical LWR and
CANDU reactor transient problems with asyvmmertric reactivity insertions. In Section 2. the model
equations are brieflv described. in Section 3, the computational procedure is described, and in Section 3
and 3, the test results and some conclusions arz given.

2. MODEL DESCRIPTION

The modal in the reference' is briefly described. The derivation of the coupled reactor kinstic method
begins with the time-dependent multi-group diffusion equations for perturbed system with delaved neutrons,
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Here A’ and B” are the removal and prompt fission operators involving the perturbation, 84 and &F,

respectively, and given by
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In the coupled reactor kinetics method', inhomogeneous importance functions for unperturbed svstem as
given by Eq. (5) below are used.
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where Ga.{r) denotes the importance function for group g and a region (or reactor) m of N regions (or
reactors) svstem, and 8a(r/ is defined such that 8.y = | when r € Vo and 6a(r) = 0, elsewhere.

Applving the adjoint operator to the time-dependent multi-group diffusion equation, (1) with the
functions introduced. Ga.J/r;. we obrain the muliu-point Kinetics equations for the fission densities S./t
with some parameters defined as follows:
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Here, ¥..1) and Iy mn(t) are defined as the time dependent coupling coefficients berween regions m and »
for prompt and i-th group delaved neuwons, and Ay and Ak'..f1) are the direct changes of the
coupling coefficients due to the perturbation of 84 and &F, respectively. The /af) and f..f1) are the
neutron generation time and delayed neutron fraction for i-th group. respectively. These parameters are
defined by weighting with the m.homooemous impontance function Gmg(r) and neutron flux @gr.y. The
coupling coefficients, K n.(1) and K'ma(t) mean the rate that a neutron bom in region n produces fission
neutrons in region m in the next generation, and their change is caused by the indirect change of flux
distributions.

Integrating the precursor equation (2) over the volume of a region m, }» we obtain the equations for
the precursor densities C.a(t) of the delaved reutrons;

_dCm(t)
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The Sa(1) and C(y) in Egs. (6) and (7) are defined as
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and

Cin(t) = [, arClr.0). ©)

When we choose the number of regions or reactors equal to one, i.e., N=1, the system becomes the
conventional kinetics equations for one-point reactor. These multipoint Kinetics equations can be regarded
as the generalization of the conventional point kinetics equations. Now, Egs. (6) and (7) can be solved
by finite difference implicit scheme, Runge-Kutta methods, etc.

3. MODEL IMPLEMENTATION

A computer code has been developed using the model equations described in Section 2. The
computational procedure is outlined.

(1) Time-independent steady state multigroup diffusion equation is solved for neutron fiux distribution @
in the fine mesh domain of reactor core by the finite difference technique with the successive
over-relaxation and cyclic Chebyshev acceleration. Correspondingly, the steady staiz precursor
concentrations, C, are evaluated in the same fine mesh domain.

(2) The stweady state fission and precursor densities for each of N regions, S./0) and C./0) are evaluated
using the fine mesh flux and preczursor concentrations.

(3) The inhomogeneous importance functions, G.Jr) for each of N regions are calculated by solving Eg.
(3) in the fine mesh domain. Note the equatior system used is a fixed source inhomogeneous
problem that can be easily solved.
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(3) The coupling coefficients and kinetic parametess. K mn. Kimn. M m. A" 2a [nn and 8-, are calculated by

integrating over regions. b, and . using @, and Ga evaluated in the fine mesh.

(5) Egs. (6) and (7) are solved for time dependen: fission density. Saf7) with a time siep selected, Jr.

(6) The procedures (4) and (3) are repeated with time increment until the end of cauculation required. In
this step. for incorporating the effect of parameters by the indirect change of flux distributions. the
neutron flux @r.y) can be recalculated with the perturbed cross sections.

4. TEST RESULTS AND DISCUSSION
4.1 LMW LWR Test Problem

The first test has been carmried cut with the well known LMW LWR Benchmark problem™. The
horizontal configuration of the ons quadrant core of the Langentuch-Maurer-Werne: (LMW) 3-D test
problem for LWR is given in Fig. 1. Thes core contains two groups of conrol rods initiating
perturbations.  Fig. 2 shows a side view of the core at the start and the end of the movement of the rod
groups. Zero current boundary condition for inner surfaces representing symmetircally identical with other
threz quadrants and zero flux boundary condition on external surfaces are used. The wansient consists in
the withdrawal of the first group of conmol rods at a raie of 3 cm per second followed by insertion of
the second conwrol rods of diagonally opposite sizes at the same speed. The resultant Tansient is followed
for 60 seconds.



A uniform mesh consisting of 22, 22 and 10 mesh spacings in the x, y and z directions, respectively
was used in solving the flux distribution for evaluating the coupling coefficients and kinetics parameters.
Initial steady state is achieved by dividing the fission cross sections by the fundamental eigenvalues, and
initial precursor concentrations are in equilibrium with the initial flux. The time step size of 0.5 seconds
has been used. The uniform 24 coupled regions in the core were used for multi-point kinetics equations.
The control rods are modeled by decreasing for the rod group ! and then increasing for the rod group 2
the thermal removal cross section at a rate consistent with their velocity insertion. At any solution time
step that the tip of the absorber being inserted does not coincide with a mesh line, the effect of the
portion of the absorber existing past the given mesh line is smeared over the cell into which it projects
by volume averaging absorber and cell properties.

Fig. 3 shows the behaviors of total mean power versus time. The result is in good agreement with
the reference Benchmark solution. The result is also compared with the result from the CAE Electronics
Lid* by the coarse mesh method developed for CANDU simulator. It is observed that the present model
vields verv good result in this kind of slow transient problem camrying out asymmetric reactivity
perturbation. The results compared with those by one point kinetics method also indicate that the present
model yields superior result to the conventional point kinetics method.

4.2 CANDLU Reactor Kinetic Benchmark Problem

The solution problem is a 3-D benchmark based on realistic three-region (reflector. inner and outer
fuels) CANDU reactor model with zero flux boundary condition for external surfaces and on reactiviey
wransients that represent the effects of loss of coolant followed by subsequent insertion of shutdown
reactivity devices’. The problem is a typical CANDU fast transient problem with large asymmetric
reactivity insertion requiring detailed 3-D analysis. The 3-D configuration of the reactor core with
dimensions and material assignments is detailed in Figs. 4 and 3. The effect of loss of coolant is
represented by linear decrease in the left-half core (5. 6. 10, 11, 17, 18. 22 and 23 in Fig. 4) thermal
removal cross sections from 0. to 0.4 seconds. followed by a decrease in slower rate during the following
2.5 seconds. After a delay of 0.6 seconds. an incremental thermal removal cross seciion in upper
right-half and down full core (shaded areas in Fig. 4 & 3) is added to simulate asvmmetric insertion of
shutdown devices at constant velocity in y-direction.

Non-uniform meshs consisting of 18. 18 and 10 mesh spacings in the x. v and 2z directions.
respectively were used in solving the flux distributions for evaluating the .coupling ccefficients and kinetic
parameters. The 72 coupled regions in the core were used for multi-point equations. For setting up
coupled regions the core was divided by each one segment in the left and right outer core and two
segments in inner core on x-direction, as much as the number of fine meshes for v-direction. and two
segments on z-direction. Initial steady state is achieved by dividing the fission cross sections by the
fundamental eigenvalues. The shutdown devices are modeled bv increasing the thermal removal cross
sections at a rate consistent with their top-to-bottom constant velocity insertion.

Fig. 6 shows the behaviors of total power versus time. The power behaviors after shutdown devices
insertion differ significantly from the reference solution by the 3-D CANDU detailed kinetics code,
CERBERUS. It is assumed that the observed difference is associated with the use of different absorber
insertion models or with the inadequacy of the present approach using the reference core steady state flux
distribution for evaluating the time-dependent coupling coefficients in this kind of fast large asymmertric
reactivity insertion transient. However. the later might be more contributive to this. Further smudy is
required. Having resolved these differences, it is concluded that the solution are reliable for increasing
power behaviors. Also. the results compared with those by one point Kinetics method indicate that the
present maodel yields superior results to the conventional point kinetics method. The CPU time required
is about multi-points times as much as that of one point kinatics codes.
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5. CONCLUSION

A computer code based on the coupled reactor kinetics theory has been developed. For the evaluation
of its applicability, it was applied 1o typical 3-D reactor neutwonic transient problems.

The test results showed that the present model yields reliable solutions for 3-D transient power
behaviors with small computing time and produces superior results to the conventional point kinetics
method.

It is generally observed that the present model produces accurate results for the slow or small
reactivity transient behaviors even with asymmetric perturbations and there is accuracy sacrifice for the
fast asymmetric large reactivity transient behavior. However, it is observed in some other tests that the
accuracy can be improved by increasing the number of muiti-point regions and using the optimised
multi-region map. Another fundamental approach for improving accuracy is to update frequently the
neutron flux dismibution used in the evaluation of the coupling coefficients and kinetic parameters
according to the severeness of the degree of local perturbation for incorporating the effects caused by the
indirect change of flux distributions. But for doing this we have to pay for much computing time.

REFERENCES

(1) KOBAYASHI, K.. "Rigorous Derivation of Multi-Point Reactor Kinetics Equations with Explicit
Dependence on Perturbation.” J Nucl Sci. Tec., 29, 110, 1992.

(2) LANGENBUSH, S, et al.. "Coarse-Mesh Nodal Diffusion Method for the Analyvsis of Space-Time
Effects in Large Light Water Reactors.” Mucl Scii Eng.. 63. 437, 1977

(3) JUDD, R. A, et al.. "Three-Dimensional Kinetics Benchmark Problem in Heavy Water Reactor.”
AECL-7236. Awcmic Energy of Canada Limited, 1981.

(3) PAQUETTE. C., et al, "Real Time Advanced Nuclear Reactor Core Model,” Eastern Aulti-conference
simulators. pp. 213, April. 1-5. 1991,



A
A | e = 3 2
Refleclor
90] -
Fuel 2 4
70

C Fuell

- % [ . )

FIG. | LMW BENCHMARK : HORIZONTAL X-SECTION

60

20

100F

\Aod Group 2

Rod Group 1

4

Initial Rod Positions

FIG.2 LMW BENCHMARK : VERTICAL X-SECTION

Rod Group 1

V
Rod Group 2

4

Final Rod Positions




Mean Power

Benchmark Relerence
Multi-Point
----- CAE Coarse
........ 1-Point

250 |-

200

150

100

50-

0 A | A 1 A 1 L 1 A 1 i
0 10 20 30 40 50 60

Time (Sec.)

FIG.6 MEAN POWER BEHAVIOR VERSUS TIME (LMW BENCHMARK PROBLEM)

AL I UUU WU W WA TN VI G G T




r

r~— -

qgl

T

w? T .mm%u:
-wm A %. 5

Vertical Cross Section at Z=300cm

Ventical Cross Section at Z=0 cm

Showing Region Assignment

Showing Region Assignment
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