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A tool that reliably removed or reduced the noise from signals in nuclear processes would help considerably in 
monitoring the condition of safety related or process signals. In this paper, we describe wavelet-based filtering 
technologies, and how they have been developed and integrated into an existing Windows software package, the Plant 
Analysis Workbench (PAW). The added feature using the wavelet technology in PAW has been used to denoise real­
time data collected in PLGS. Compared with the traditional filtering technology, the wavelet filtering technology 
in PAW can produce much more accurate and satisfactory results. This paper gives a complete description of the 
use of the wavelet shrinkage technique underlying the denoising algorithm used in PA \V. 

I. INTRODUCTION 

One of the basic problems in the validation of data from nuclear power plant is how to estimate signals from noise­
contaminated data. Traditional filtering techniques based on Fourier representation of the data are not appropriate 
for characterizing strong transients in signals since each mode of the Fourier decomposition contains information that 
describes a particular localized feature in the signal. In contrast with the trigonometric functions, wavelets can be 
supponed on a finite interval. Therefore, combining the traditional filtering technologies with the wavelet transform 
creates a powerful near optimal approach for denoising contaminated signals which ma~ have complex transient 
responses. 

In this paper. we describe a filtering technique based on a complex valued discrete wavelet transform. This 
technology has been built into a Windows-based sofu\'are package, Plant Analysis Workbench (PAW). used routinely 
for operations at Point Lepreau Generating Station (PLGS). It has been shown that this filtering technology is very 
powerful in removing additive noise from contaminated signals' spectrum changes ":ithin a specific time period. 
In fact, the developed wavelet-based filtering technology has been used successfully during the recent start-up 
operations at PLGS. 

The paper is organized as follows. In the next section, we present the basics of the wavelet-based multiresolution 
analysis of a signal. Section 3 describes the filtering technique with some mathematical arguments for justifying it. 
Integration of the wavelet technology for signal denoising into PAW and applications of the wavelet denoisir:g feature 
in PLGS are given in Section 4. The last section, Section 5, gives a summary of the paper. 

2. WAVELETS AND MCLTIRESOLUTION ANALYSIS 

A multiresolution analysis of a signal x(t) is a sequence of approximation spaces 1,~ c L2(1R). 

(1) 



and P,A.t) represents the projection of the signal onto ~ so that this projection is the closest approximation of x(t) 
with resolution 2-1. Each space ~ is generated through the discrete translation of a scaling function <p scaled at the 
appropriate resolution, that is 

(2) 

where 

cp. (t) = '2P <p(it - k) J,k 
(3) 

The coefficients cj.J, are labelled with a position index k and scale index): the larger is the value of j, the more 
squeezed is the function <p

1
_it). The detail signal at the resolution 21 is defined by the difference of two subsequent 

approximations, 

(4) 

and furthermore, the signal can be expanded as 

(5) 

where 

(6) 

is the wavelet function scaled at the resolution of the details and localized at position k. In her seminal work, 
Daubechies defined such basic functions subjected to the following constraints: optimal localization in both space 
and frequency and orthogonality of the whole set of the discrete dilations and translations of the genuine function 
-'+'· In the present work, we use an extension of her construction by considering "symmetric compactly supported 
orthogonal wavelets". The major difference with the standard Daubechies wavelets is the complex value of '-I' (and 
of the associated scaling function \j/) implied by the symmetry property. Figures l and 2 display such complex 
functions. The symmetry property is worth introducing because it greatly reduces the shift variance involved in 
general with the discrete wavelet representation of signals. 

Given a signal x(t) regularly sampled at time t;, i = 1, ... , 2m, we first consider the finer approximation of the signal 
P ,,,x(t). The wavelet representation of the signal is the decomposition 

m-J 

P"' x<t) = Pm, x(r) + :E g1xcr) (7) 
j=m• 

and the discrete multiresolution analysis of x(t) consists of the computation of the coefficients of the expansion 

(8) 

In this expansion. J = m,., < m is an arbitrary low resolution scale. The coefficients in the previous expansion are 
computed through the orthogonal projection of the field upon the multiresolution basis: 
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cJ" = f '+'pclt)fi.t) dt 

~.k = I ~.k(t)j{t) dt 

(9) 

Writing the basic decomposition Pi .. ~t) = P r<t) ~ Q_,x(t) in terms of the wavelets modes, the fast wavelet 
decomposition transform (FWT) is the algorithm composed with the low-pass filter (ak) and the high-pass filter (bk 

= (-It aH: ) associated with the two projectors P1 and Qr respectively: 

C = ""'a C ),11 V-' L.J k-211 j•l,k 
J, 

(10) 

d = '1"t'"']j C 
j.lJ V.:. L.J k-2,r j•l.k 

It. 

Staning from the initial set of coefficients cmk that represent the data at the finer resolution, the iterative action of 
the previous algorithm gives the coefficients of the coarser resolution (emu k) at subsequent dyadic scales, j = mo, m0 

~1, ... ,m-1. .. · -

Conversely, the reconstruction algorithm is expressed by the inverse FWT: 

c = r-;~a c + r-;~b d 
rl.n V .;_ L..t n-:k j) V .;_ L..t 11-::.: J.k 

(11) 

k • 

In the present work. the filters are complex valued and symmetric: ak = a,-k· The next table displays the filter 
coefficients associated with the complex wavelet of Fig. 1. 

k a" cpk-1 

1 0.662912 ..1.. 0.l 71163i 0.976562 - 0.41352 li 

2 0.110485 - 0.08558 Ii 0.015624 ..1.. 0.221889i 

3 -0.066291 - 0.08558 li -0.003906 - 0.015128i 

Let us conclude this Section with a remark about the initialization of the FWT. Starting V.'ith samples of a signal. 
say x,. we need to estimate carefully the coefficients of the finest approximation P ,nX(t). Here again. the symmetry 
of the basis is helpful and we can easily show that. defining $k = 4>-~ = 4>((2hl)/2). we have an accurate 
approximation given by 

p mxl[} = L CmJ-<p,,,it) with . (12) 
~ 

To summarize, the wavelet transform is the mapping 
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(13) 

All the quantities are complex valued. Conversely, the inverse wavelet transfonn is the mapping 

(14) 

and the reconstruction of the signal is given by 

(15) 

3. WAVELET SHRINKAGE AND NON-LINEAR APPROXIMATION 

We suppose that we are interested in a function x(t) for which we know a regular sampled time sequence corrupted 
with an additive Gaussian white noise: 

(16) 

Donoho and Johnstone proposl!d a three steps method for recovery of x(t): 

(a) Perform a multiresolution analysis from the empirical data Yi yielding the noisy wavelet coefficients ~.4, j 
= m0 , m0 + l, ... , m - 1 and k = 1,2, ... , 21 . 

(b) 

with 

(c) 

Given a threshold A (defined later), apply the non-linear soft-thresholding operator to the noisy wavelet 
coefficients: 

A 
sA.(z) = ( I - -. ) = if A< izl, andO elsewhere 

1=1 
( l 8) 

Invert the wavelet transform with the threshold wavelet coefficients and estimate the signal from the new 
coefficients cm.It.· 

(I 9) 

The choice of the threshold is critical: a large value of A gives a wavelet estimator chat underfits the data (large 
bias); small value of A gives overfitting (large variance). Donoho and Johnstone proposed different policies for 
choosing i... Here, we adopt the so-called universal visu shrinkage for \Vhich 

where O is an estimate of the noise level. An important feature of this choice is that it guarantees a noise-free 
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reconstruction of the signal. 

Let us conclude the Section with few remarks and a test experiment. 

How can we estimate a ? The noise level can be accurately computed from the modulus of the wavelet 
coefficients at the finer scale. This is because only few wavelets coefficients dm.i.k of the first level of the 
wavelet transform are relevant for the true signal. Conversely. all the coefficients are corrupted by noise. 
This observation justifies a simple statistical measurements of the noise level directly from the amplitude 
of the dm.i)· This estimate is given by 

0- = median( jdm-U I) 
0.645 

(20) 

Why does it work? One important feature of the wavelet bases is that they provide unconditional bases of 
a wide range of smoothness spaces. This means that the various smoothness measurements can be directly 
computed from the wavelet coefficients. The wavelet shrinkage acts as a smoothing operation in any of this 
range of smoothness measures. Let us note at this point that the shrinkage defined by ( I 8) preserves the 
phase of the coefficients. It has been shown that the phases of the wavelet coefficients contains important 
information about the local transients in the signal. The amplitude of the coefficients can be interpreted as 
the probability of occurrence of such transients in the desired signal. 

Experiment with a real signal was conducted and results are provided in Figures 3 and 4. Figure 3 displays 
l 024 samples of data contaminated with noise. The solid line in the figure is the coarse approximation of 
the signal hidden in those data. The approximation is P ,,;x(t) given in Equation (7) with m-m0=7 (i.e., 7 
levels in the wavelet decomposition) and m=l 0. Figure 4 shows the denoised signals after the action of the 
shrinkage technique. During the synthesis of this signal, 87% of the original wavelet coefficients have been 
shrunk to O because they were associated with noise. 

WAVELET DENO ISING FEATURE IN PAW 

From the engineering point of view, wavelets can be considered as scales according to which the functions or 
sampled data are analyzed. Wavelets can be supported on almost any arbitrarily s4mall interval. By processing the 
data at different scales, wavelets give a representation of the signal that extract local "details" of the signal. In 
practice, these "details'' arc computed from tv,o parallel convolutions, a low-pass and a high-pass filtering 
respectively. 

Given an empirical signal, its multi-resolution analysis amounts to projecting 1t m successive ""detail" spaces 
associated with scales from the finer (initial sampling resolution) to some coarser scales. The noise component of 
a signal is projected in the "detail'' spaces. The ·'shrinkage" technique, which is used to denoise the signal. consists 
in defining a set of thresholds and a threshold rule such that scale by scale, the noise can be removed by ·•killing 
or preserving·· the wavelet coefficients. 

4.1 Wa,,elet Denoising Feature 

The wavelet filtering technology has been integrated into an earlier developed easy-to-use tool. the Plant Analysis 
Workbench (PAW} [6], for the purpose of removing noise components contained in sampled signals. The wavelet 
denoising fearure of PAW has been tested and used by engineers in PLGS. 

The first successful use of the wavelet denoising feature was during start-up operations in PLGS at the end of 
December l 996. One of the important stan-up operations in PLGS was to detect possible channel flow blockage 
caused by small pieces of wood in the channels. The flow blockage can be detected by identif)·ing the shape of a 
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step response, the channel outlet temperature, to a step input, the channel inlet temperature, in the reactor. An extra 
delay in the step response represents a possible flow blockage. However, the identification of such a delayed step 
response cannot be accurately done by directly using the contaminated data. The identification package for flow 
blockage gives lots of false alarm of the flow blockage when data contain unnecessary variations due to the noise 
component. During the start-up operation, the Wavelet filter was used, as a means of signal preprocessing, to denoise 
the sampled data. Then, the denoised data was sent to the identification package to detect the possible flow blockage. 
It has been proved that the flow blockage_ can be successfully detected by using the signals denoised using the 
Wavelet filter. 

In addition to the above usage, the denoising feature has been widely applied to other situations. The results wilJ 
be shown in Section 4.2. 

There are four ways of generating Wavelet Denoised signals using PAW. These procedures are summarized as 
follows: 

Procedure 1 . 

Step 1.1: 
Step 1.2: 
Step 1.3: 
Step 1.4: 
Step 1.5: 

Step 1.6: 

Procedure 2. 

Step 2. I: 

Step 2.2: 
Step 2.3: 

Step 2.4: 

Procedure 3. 

Step 3.1: 

Step 3.2: 

Step3.3: 
Step 3.4: 

Apply the denoising feature to a set of redundant signals, or a selected signal by clicking the 
·•Display" menu item: 

From the PAW main menu, click "Display" item to show a DISPLAY dialogue box; 
Select an interested VARIABLE after selecting a proper GROUP~ 
Click the "Wavelet" button within MODELS block of the dialogue box; 
Enable the "Over Write" option as if necessary by clicking "Overwrite" option; 
Click the "Display" button to view the denoised signals on the screen. If the denoised 
signals do not exist, PAW will automatically launch the wavelet denoising DLL for the 
given signals. Clicking the "Cancer button will leave the dialogue box without 
performing the wavelet denoising operation; 
Optionally, select one of printing sub-menus under the "Print" pull-down menu within the 
"File" main menu item to print the graph. 

Apply the denoising feature to a set of redundant signals, or a selected signal by clicking rhe 
"f1 1avelet Denoise" item under the "Function" menu item: 

From the PAW main menu, click the ''Function" item to show a pull-down menu, and 
then select the "JJ'avelet Denoise" item to activate a Wavelet Denoising dialogue box: 
Select an interested VARIABLE after selecting a proper GROUP; 
Click the "OK'' button to perform wavelet denoising of the: selected signals and view the 
denoised signals on the screen. Clicking the "Cancef' button will leave the dialogue box 
without performing the wavelet denoising operation: 
Optionally, select one of printing sub-menus under the ··Print'' menu item within the 
"File" pull-down menu to print the graph. 

Apply the denoising feature to a set of selected variables which by clicking the "Build" menu item 
within the "File" pull-down menu: 

From the PAW main menu, click the ·'File" item to show a pull-down menu, and then 
select the "Build" item to activate a BUILD dialogue box; 
Select a nonn file for ''Previous iVorm File". Usually, a previous norm file can be found 
in a directory like "c:\paw\longterm". The default file is satisfactory for use with 
Wavelets; 
Select interested V ARIABLEs from a list of GROUPs; 
Click the "Wavelet'' button \Vithin MODELS block of the dialogue box: 
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Step 3.5: 

Step 3.6: 

Step 3.7: 

Procedure 4. 

Step 4.1 : 

Step 4.2 : 

Step 4.3: 
Step 4.4: 

Step 4.5: 

Step 4.6: 

Enable the "Over Write" and "Global Removar options as if necessary by clicking the 
options. Both options are enabled as default; 
Click the ··Build Part" button to perform wavelet denoising of the selected variables. 
Clicking the "Cancel' button will leave the dialogue box without performing the wavelet 
denoising operation; 

Optionally, select the "Batel, Print ... " menu item within the ''File" pull-down main menu 
to print one or more graphs of denoised signals. 

Apply the denoising feature to all signals in the selected input SEDE file by clicking the "Build' 
item within the "'File" pull-down menu: 

From the PAW main menu, click the "·File'· item to show a pull-down menu, and then 
select the "Build" item to activate a BUILD dialogue box; 

Select a norm file for "Previous Norm File". Usually, a previous norm file can be found 
in a directory like "c:\paw\longterm". The default file is satisfactory for use with 
Wavelets; 

Click the "Wavelet'' button within MODELS block of the dialogue box; 
Enable the '·Over J·Vrite'' and "Global Removal' options as if necessary by clicking the 
options. Both options are enabled as default: 

Click the "'Build Alf' button to perform wavelet denoising of all signals . Clicking the 
"Cancer button will leave the dialogue box without performing the wavelet denoising 
operation; 

Optionally, select the '"Batch Print ... ,. menu item within the "File"' pull-down main menu 
to print one or more graphs of denoised signals. 

Procedure 5. Once the denoised signals have been obtained by one of these four procedures they may be 
exported to a file of SEDE format: 

Step 5.1 

Step 5.2 

Perform one of the four procedures described in the above. Usually, Procedure 4 is 
recommended: 
Click the "SEDE Format' within the ··output' pull-down menu. The exported file name 
has the extension of ".rst'·. 

Since the wavelet decomposition can be only applied to a set of data ,vhose length is equal to 2n. where n is natural 
integer from l , 2 ... . , it is suggested that the number of samples should satisfy the condition especialiy when only· 
a small number of samples will be used. Otherwise. in some cases, a deviation at the end of the sampling period 
may occur. Another way to avoid the deviation is to change the threshold value of wavelet denoising so that more 
high frequency components will be retained in the denoised signals . 

The maximum number of signal samples to be denoised in PAW is 2048, which will meet most applications. 
However. when the number of samples of selected signals is larger than 2048, PAW will produce quality denoised 
signals. In few cases \\'here consistent jumps exist in all denoised signals at the 2048th sample instance, the 
ma.xi mum value should be increased by a factor of 2~ with n=l , 2 , .... In this case, some special technique is needed 
in order to produce quality denoising results . 

4.2 Results 

Results depicted in Figures 5-1 U demonstrate significant advantages of Lht: wavelet technology over traditional 
filtering technologies. Three contaminated signals and their denoised counterparts are shown in .Figures 5 and 6. 
respectively . Comparison of denoised signals with their raw data is presented in Figures 7 and 8. The results in the 
figures clearly shown that the denoised signals contain major dynamics of the raw data and only the noise 



components are removed. Use of the wavelet denoising technology during the stan-up operation at PLGS is 
illustrated in Figures 9 and IO where a set of raw data and denoised signals are presented. 

5. CONCLUSIONS 

In this paper, a wavelet representation of a signal and the shrinkage technique for denoising data are described. The 
filtering technology is applied to real-time data of a nuclear power plant, Point Lepreau Generating Station (PLGS). 
In particular, this technology has been built into our Windows-based software package, Plant Analysis Workbench, 
and become a routine operation in PLGS. It has been shown that the filtering technology is very powerful in 
removing noise from contaminated signals without specifying the frequency band-width of the signals. It also works 
very well when the signals' frequencies change within a time period under consideration. In fact, the developed 
Wavelet-based filtering technology has been used successfully during recent start-up operations at PLGS. The 
convincing results will stimulate more research in the wavelet-based approach to signal processing. Given a poor 
signal-to-noise ratio, more advanced thresholding technique should be used. The approach described in this paper 
can handle the situation where noise levels of signals are different. 
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Fig. 8 Comparison of a Raw Signal, Header 2-3 Differential Temperature, with its Denoised Signal 
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Fig. 9 Raw Signals of Channel Temperature During Start-up Operations in PLGS 
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Fig. 10 Denoised Signals of Channel Temperature During Start-up Operations, Using Wavelet in PA\\. 
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