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THEORETICAL PREDICTION OF THE GARTER SPRING POSITIONS ALONG 
THE CHANNELS OF SOME CANDU REACTORS 
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ABSTRACT 

We propose a methodology for predicting the 
positions of the Ganer Springs (GS) along the 
channels of those CANDU Reactors which have 
suffered displacements of the GS from their design 
positions. From the experimental location of the 
GS along some inspected channels we shall be 
able to predict the localization of the GS in the 
rest of the channels. We model the GS along a 
channel as beads along one abacus line (that is to 
say: hard cores in one dimension.) We use the 
Statistical Mechanics Theory to get the relation­
ships between the mass distribution and the 
"external potential" which fully determines that 
distribution. That allows us to design the men­
tioned predicting procedure. 

1.0 MOTIVATION AND STRATEGY 

The motivation of this work is to build up a 
mathematical model on which we could study the 
problem of the displacement of the GS from their 
design positions along the channels of a CANDU 
reactor, where they act as separators between the 
pressure tube .(PT) and the Calandria tube (CT). 
The model should be simple, in order to allow 
analytical treatment but it should contain all the 
features which are relevant to the subject prob­
lem. We will state a model which emphasizes the 
features we consider relevant and which is exactly 
solvable. Other relevant features, which we hope 
to learn from the readers, could be afterwards 
implemented on top of our simplifying assump­
tions. Our model will provide a way to interpo­
late information from some set of inspected 
channels in order to get information about the rest 
of them. The information required, that is the 

input to the implemented computer codes, is the 
set of positions and dispersions of the GS along as 
many channels as possible in a given reactor. 
The output of those codes will be the probability 
of finding a GS at a distance x along the axis of 
the rest of the channels. We shall see how good 
the model mimic the real system whenever we 
had a chance to analyze massive experimental 
data. We shall perform the alluded interpolation 
at the level of the causes whose effect is the 
displacement of the GS. We add together those 
causes in what we call the "external potential" 
u(x) which is related one to one to the "mass 
distribution" p(x) in the non-uniform systems at 
equilibrium (x being a coordinate running along 
the axis of the channel from O to L.) Although 
the existence and uniqueness of the potential u(x) 
can be ensured in general, the chances to get a 
constructive formulation of the relationship be­
tween p(x) and u(x) are zero for real non-uniform 
systems. Nevertheless, the formalism can be 
implemented on few model systems. We shall 
formulate one of those simplified models below. 
That model adapts particularly well to the physics 
of the GS and will allow us to explicitly give u(x) 
as a function of p(x). Reciprocally, we shall get 
p(x) and the correlations c(xl,x2, .... ) as functions 
of u(x). We shall discuss how to tune up the 
model on the basis of massive data from a given 
reactor as well as its further use on operating 
reactors where the data set is necessarily more 
restricted. We shall discuss in the appendix some 
aspects of the foundations of the model. 

2.0 THE MODEL 

We consider the GS as a set of hard cores in one 
dimension. That is, pictorially, one line of an 
abacus of length L (L = 600 cm) with 2 or 4 



beads of length a (a = 0.6 cm). We are implicit­
ly assuming that the GS are always perpendicular 
to the axis of the channel which is not realistic. 
Corrections due to tilting are easily estimated 

-
u(x) in eq.(1) contains all the possible causes .gf 
the displacem~nts of the GS from their desi .1 

positions. -from a model already studied in the literature and 2.2 Probability of Presence of a GS 
result to be of the order of a/L = 0.001. We 
shall come back to this point in the appendix. 
The PT axis and the CT axis are pictured straight 
and coincident. Departures from that hypothesis 
will be related ultimately to the effect of gravity 
and are included in the "external potential". That 
potential will also include, through a convenient 
generalization of standard theories (see appendix) 
the effect of the vibrations of the Calandria, the 
friction of the GS with the tubes and all other 
interactions of the GS with the rest of the Uni-
verse. The system of hard rods in one dimension 
is one of the few exactly solvable models in the 
framework of the Equilibrium Statistical Mecha­
nics Theory (1,2]. This system can be studied by 
itself in an infinite medium [3], confined to a 
finite length [ 4,5] and also when it interacts with 
an arbitrary external field [6]. We have adapted 
the theory developed in the references above (with 
few new contributions) through the equations 
summarized below: 

2 .1 The external potential 

The external potential as a function of the distri­
bution of mass in the finite length L, measured in 
units of kT, k being the Boltzmann constant 
and T being the absolute temperature: 

pu(x)-ln z-ln p(x)+ln{t-f
4
p(w)d(,>} 

-1x+a p ( 11)d11 

x 1-f." p(C&l)dC&l 
'l-a 

(1) 

In eq.(l) the "activity" z = exp(-/3 µ), µ. being 
the "chemical potential" of the system in equilib­
rium, could be exactly evaluated [7] but it results 
more economical to fix it as an arbitrary constant 
because we will renormalize it anyway. We 
adopt the same criterion with respect to the 
"temperature" /3. It is worth to remark here that 

The probability of presence of a GS at a positi~ 
x in the segment [O,L] is equivalent to the distr r 

uted density of mass in the Canonical Ensemble, 
which was obtained (through convenient Lapl~ 
transformations) in eq.(6) of Ref. [8]: : 

N 
p exp(-Pu(x)) ~ 0 (x)- QJ._O,L) f:{ Qi-1< ,x) QN_;(x,L) 

,..., 

where: 

1 

Qk(x,y)- J..J.r1 
•·· (Y exp(-(3 ~ u(x.))dx •·•dx 

kl .r+a J~ +a ~ , 1 k 
I 1-l -

(: 

-i 

is the Canonical Partition Function of k ha i 
cores in the segment [x,y] with the normalization 
Q0(x,y) = 1. -

2.3 The Conditioned Probability 

The conditioned probability of finding a GS t 
position y when the first one was found at posi­
tion x < y, was established in Ref. [ 4] and resu~ 
to be: 

P(y/x)- c(x,y) 
P(x) 

-
where P(x) comes from eq. (2) and as we got in 
Ref. [8], with further corrections: ~ 

( ) exp(-P(u(x)+u(y))) 
C "'1Y - QJ._O,L) -

N 

E Qi_l(O,x)Q,:(x,y)QN-i-1:(y,L) 
J+k-1 
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In these conditions we can design a procedure of 
interpolation which, as we announced above, will 
allow us to use the experimental know ledge of the 
positions and their dispersions in the inspected 
channels to predict the probability of presence of 
the GS and their correlations along the other 
channels. The procedure works as follows: Let 
us assume that we know the positions x\ and their 
dispersions er\ along the ax.is of some channels. 
The superscript counts the GS and runs from 1 to 
2 or from 1 to 4 depending on the reactor. The 
subscripts (i,j) serve to order the inspected chan­
nels on the section of the Calandria. We shall put 
indexes (i,j) to eqs.(1-5) when referring to those 
tubes. We identify a generic target channel with 
the pair (k,l). For each channel (i,j) we construct 
a continuous distribution of mass with two param­
eters per peak which get fixed after the experi­
mental information. That information consists of 
the positions x\ and the dispersions o\. For the 
sake of simplicity we start proposing a sum of 
Gaussian distributions, conveniently renormalized: 

1 N 1 (x-x.1 )2 

p .. (x)--" -exp- __ 11 
IJ 2IlN~ .J .J 

.1-1 a iJ a iJ 

(6) 

The generalization to more elaborated distribu­
tions of the type of the ones in Ref. [9, 10] is 
immediate. From those distributions we evaluate 
the external potential (which is distributed in the 
space) along the axis of the inspected channels 
through eq.(l). Now we assume that the external 
potential is smooth enough as to be numerically 
interpolated within the Calandria. We shall 
interpolate on sections of the Calandria, that is on 
the indexes (i,j) for fixed values of x, and con­
struct u(x) for the target channel (k,1) step by 
step. Once we know u(x) we use eqs.(2-5) to 
predict P(x) and P(y/x) for the target channel. 

3.0 RESULTS 

So far we only had at hand a set of randomly 
generated data [ 1 O] and a restricted set of experi­
mental data [ 16, 17]. The first mentioned set of 
data w u generated on the basis of a proposed 

distribution which matches the first moments of a 
set of experimental data. Those generated data do 
not correspond to any real channel but in a global 
and indirect manner and are of little help in the 
process of judging the goodness of the model, 
since the whole procedure is designed for the 
investigation of specific individual channels. 
Nevertheless, the implementation of the process 
on that set of data allowed us to check that the 
model behaves as expected, from the Statistical 
Mechanics point of view, when it is fed with 
randomly generated numbers. The details can be 
seen in Ref [11]. 
The mentioned set of experimental data is present­
ed in Table 1 at the end of the paper. In order to 
show how the model works, we take sets of 15 
channels as input data and predict the positions, 
the dispersions and the relative error along the 
remaining one. We define the relative error at 

each channel as the average of the relative errors 
in the positions of the 4 garter springs in the 
channel. The results are presented in Table 2 also 
at the end of the paper. The global relative error 
of the whole calculation, what we estimate as the 
average relative error from the last column of 
Table 2, is: 22 % . 

4.0 ASSESSMENT 

The predictive value of our model must be ana­
lyzed after taking into account the following 
factors: 

1) The subject data set is not big enough as to 
allow a proper tune up of the model. The nor­
malizing constants and the proposed continuous 
distributions for the input densities have to be 
adjusted on the light of a massive set of data. 
Those data should be the positions and dispersions 
of the GS along some compact set of channels in 
some fully inspected Calandria. We insist in the 
necessity of analyzing such a data set in order to 
tune up the model and then to use it as a guide in 
the localization of the GS in operating reactors. 
The values in Table 2 are presented just as a 
demonstration of the potentiality of the model 
and, although they are not so bad, we are willing 
to recalculate them after we have a chance to 
actually do the mentioned tune up. 



2) We are interpolating in two dimensions and the 
potential is defined in the space. We are current­
I y working in the implementation of a three­
dimensional interpolation process which could 
improve our predictions. 

3) The average global error, which tries to sum­
marize the goodness of the model, could be 
strongly affected by the size of the input data set, 
as we pointed out above. In order to give a 
realistic estimation of the practical relevance of 
our predictions we should be able to test them in 
other reactors and to study the dependence of the 
global error with the size and quality of the input 
data set. 

On the light of the comments above, we have 
preferred no to pursue a detailed discussion of the 
results in Table 2. We could analyze correlations 
among the GS in the same channel, correlations 
among different channels as a way of establishing 
eventual symmetries, etc. We shall pursue that 
analysis after the model is properly tuned up as 
discussed above. Nevertheless, there is one 
feature of the results in Table 2 which is worth to 
be remarked: The relative error is bigger in those 
channels where the GS were found stuck together. 
That bigger error results to be natural since we 
are considering the GS as hard cores with a pure 
repulsive interaction. We shall include a "sticky 
interaction potential" among the GS, in future 
formulations of the model. 

For the sake of completeness, we will briefly 
discuss the foundations of the model in the Ap­
pendix below. 

5.0 APPENDIX 

During the set up and the analysis of the model, 
several critics were pointed out by colleagues and 
friends. We shall discuss here the ones related to 
the foundations of the model. 

The existence and Smoothness of the External 
Potential can be blindly ensured for conservative 
systems. The GS dissipate energy by friction 
with the tubes to which they are attached and so 
the subject system is not conservative. In addi-

tion, the presence of a random force (due to ~e 
vibrations of the Calandria) obscures much m .:-e 
the settlement of an equilibrium state and that is 
essential for the validity of the whole theory. -et 
us proceed by parts: First consider a syst n 
whose dynamics are dominated by friction or drag 
rather than by inertial or random forces. Ler-'1s 
assume that the system is subjected to an exter 11 
potential u(x). The Newton's equations of motion 
read _, 

yi--Vu(x)-F(x) 

where 'Y is the drag coefficient and we symbolize 
the time derivative with a dot and the gradi~H 
operator with V. This by itself will drive u1e 

system to the configuration of lowest poten~ 
energy. If the dissipation is countered by rand, n 
forces, which while averaging zero will always 
pump energy into the system, the Newto~s 
equations will look instead: 

yi- -Vu(x)+A(t) (A~ 

If we assume white noise, we would have: -

... 
And so eq.(A2) is a Langevin Equation. 1 e 
zero correlation time assumption simply means 
here that the correlation time of the vibratiom--,s 
short compared to the scale of non-random n _ -
tion of the GS. With standard probability ma­
chinery we convert eq.(A2) into a Fokker-Plar7k 
Equation for the probability distribution of m~Js 
at x and t: 

ap(x,t) 
y at - (A"-' 

-V · (p(x,t)Vu(x)+ ~ Vp(x,t)) 

-
-
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Then the H-Theorem of Boltzmann shows how 
p(x, t) decays steadily to the stationary solution: 

p(x) - Kexp(-Pu(x)) (AS) 

We finally include the inertial terms and get: 

Mv--Vu(x)-yv+A(t) 
v-.i 

(A6) 

By assuming white noise again and, after some 
computations, the interested reader could prove 
that p (x, v, t) settles down to a Thermal Ensemble 
and then the Equilibrium Statistical Mechanics 
applies [ 12]. 

The assumption of perpendicularity of the GS 
with respect to the axis of the channel is an 
idealization and corrections could be required. 
The case with tilting is already considered in the 
literature [13] and it results in the existence of an 
effective size of the cores. The influence on the 
variables of eqs.(1-5) is estimated to be of the 
order of a/L = 0.001. 

The Ensemble Averages (which are essential to 
the Statistical Mechanics Theory) make real sense 
when dealing with systems with a big number of 
particles. If we think of a single channel we 
have, at most, 4 particles (the GS) and then we 
would fail at the time of changing Ensembles 
(through the Laplace Transformations mentioned 
in the text above) see Ref.[14]. To overcome that 
problem we shall think of a whole set of chan­
nels, which are replicas of the one of interest, and 
we shall perform the averages on the set of 
replicas. This is a trick first proposed by M.Kac 
[15]. In these conditions we get a selfconsistent 
model, even in the case with only 2 GS per 
channel. 
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TABLE 1: POSIDONS AND DISPERSIONS OF THE GS IN 16 CHANNELS, DISTRIBUT­
ED ON A SECTION OF THE CALANDRIA, MEASURED IN CENTIMETERS FROM ONE 
OF THE ENDS OF THE CHANNELS. THOSE ROWS WHICH HAVE AN ASTERISK IN 
THE LAST COLUMN ARE TAKEN FROM REF.[16] AND THE OTHERS FROM REF.[17]. 
THE CHANNELS ARE NAMED a 't THEIR INDEXES (I,J) ON THE INTERPOLATION 
GRID AS DISCUSSED IN THE TEXT. 

I CHANNEL I Xl I X2 I X3 I X4 I DISP I 
(1, 15) 145.0 242.0 347.0 347.0 2.5 

(2,8) 154.0 358.0 358.0 368.0 2.5 

(5,20) 138.0 183.0 297.0 450.0 5.0* 

(7,8) 104.0 104.0 509.0 509.0 2.5 

(7, 12) 144.0 222.0 375.0 395.0 2.5 

(9, 12) 225.0 ? ? 265.0 2.5 

(9,6) 574.0 574.0 574.0 574.0 2.5 

(9,13) 45.0 50.0 195.0 568.0 5.0* 

(9,20) 143.0 242.0 347.0 444.0 5.0* 

(10, 1) 132.0 233.0 336.0 583.0 2.5 

(10,7) 145.0 247.0 349.0 584.0 2.5 

(10,13) 212.0 247.0 318.0 318.0 2.5 

(10,18) 135.0 185.0 365.0 450.0 5.0* 

(11,10) 153.0 262.0 335.0 343.0 5.0* 

(12,8) 122.0 400.0 550.0 550.0 2.5 

(18,9) 223.0 271.0 373.0 576.0 2.5 



TABLE 2: PREDICTED VALUES FOR THE POSIDONS AND DISPERSIONS OF THE GS 
ALONG THE CHANNELS OF TABLE 1 THROUGH THE PROCEDURE DESCRIBED IN 
THE TEXT. THE NUMERICAL INTERPOLATION WAS PERFORMED BY USING 
STANDARD ALGORITHMS [18]. THE RELATIVE ERROR (LAST COLUMN) IS DEFINED 
IN THE TEXT. 

CHANNEL Xl X2 X3 X4 DISP REL.ERR. 

(1,15) 153.5 300.0 355.0 445.0 20.0 0.16 

(2,8) 147.5 263.0 265.0 350.0 10.0 0.20 

(5,20) 143.0 240.0 350.0 448.0 7.5 0.21 

(7,8) 145.0 210.0 247.0 320.0 15.0 0.56 

(7, 12) 140.0 222.0 372.0 390.0 10.0 0.03 

(9,2) 135.0 230.0 335.0 585.0 10.0 0.52 

(9,6) 125.0 337.0 400.0 575.0 15.0 0.37 

(9, 13) 42.0 60.0 198.0 570.0 20.0 0.03 

(9,20) 138.0 186.0 365.0 450.0 15.0 0.08 

(10, 1) 230.0 265.0 330.0 570.0 20.0 0.23 

(10,7) 144.0 250.5 350.0 580.0 7.5 0.01 

(10,13) 47.0 195.0 350.0 567.0 20.0 0.46 

(10,18) 144.0 240.0 345.0 445.0 20.0 0.11 

(11,10) 125.0 250.0 320.0 390.0 20.0 0.11 

(12,8) 145.0 255.0 347.0 580.0 10.0 0.25 

(18,9) 126.0 126.0 402.0 552.0 5.0 0.27 
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