
,. 

.. 

,.. 

,.. 

r 
r 
,,,. 

.. 

321 

SOURCE 2.0 MODEL DEVELOPMENT: U02 THERMAL PROPERTIES 

P.J. Reid 
ALARA Research, Inc., 975 First Ave., Saint John NB 

M.J. Richards 
Hydro Quebec, 1155 rue Metcalfe, Suite 880, Montreal QC 

F.C. Iglesias, A.C. Brito 
Ontario Hydro, 700 University Ave., Toronto ON 

Introduction 

During analysis of CANDU postulated accidents, the reactor fuel is estimated to experience large temperature 
variations and to be exposed to a variety of environments from highly oxidized to mildly reducing (Reference [I[). 
The exposure of CANDU fuel to these environments and temperatures may affect fission product releases from the 
fuel and cause degradation of the fuel thermal properties. Thus, it is important to model UO2±x thermal properties as 
a basis for predicting fuel behaviour during accidents. 

New models for the thermal properties of UO2±x (i.e., heat capacity and thermal conductivity) have been jointly 
developed within the Canadian nuclear industry under the SOURCE 2.0 project (Reference [2]). SOURCE 2.0 is a 
safety analysis code which will model the necessary mechanisms required to calculate fission product release for a 
variety of accident scenarios, including large break loss of coolant accidents (LOCAs) with or without emergency 
core cooling. The goal of the model development is to generate models which are consistent with each other and 
phenomenologically based, insofar as that is possible given the state of theoretical understanding. 

Urania heat capacity is modelled in three different temperature (T) regimes: T < 2670 K, 2670 K < T < Tmelt and 
T > Tme1t· For temperatures less than 2670 K, the heat capacity is modelled as having components due to phonon 
excitation, lattice dilation, Schottky defects and electron-hole excitation. At 2670 K, the urania is assumed to 
undergo a Bredig transition, and above this temperature the urania behaves differently. A semi-empirical approach 
is taken to this high temperature solid urania regime: the small polaron component is still modelled explicitly (since 
it involves the U cations and the Bredig transition only affects the O sub-lattice) and the balance is empirically 
derived based on experimental enthalpy data. For liquid urania, a separate semi-empirical approach based on the 
experimental data is used. Urania thermal conductivity is modelled by assuming that three processes contribute to 
the thermal conductivity: phonon transport, electron-hole transport and thermal radiation. The models of phonon 
and electron-hole excitation in both the heat capacity and the thermal conductivity are fully consistent, with the 
electron-hole transport assumed to be governed by a small polaron transport model. 

Heat Capacity of U02+, 

Heat capacity is defined as the amount of energy which is required to raise the temperature of a given mass of a 
material by a given temperature increment. The heat capacity which is determined by this model is Cp, the heat 
capacity at constant pressure, and is expressed in units of J/(kg·K). Theoretical determinations of heat capacity 
generally are in terms of Cv, the heat capacity at constant volume, which is related to CP through the following 
relation from Reference [3]: 

C =C + -- -T 
[

a
2

. V] 
p V p 

( I ) 
where: 

a is the coefficient of volumetric thermal expansion [K- 1
) 

P is the coefficient of isothermal compressibility [Pa·'] 



V 
T 

is the inverse of the density [m3/kg] 
is the temperature [K] 
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Several different processes can come into play as a substance absorbs energy and its temperature increases. In the 
case of a crystalline solid , these are: 

I) Increase in the number of charge carriers (e.g. conduction electrons and holes) 
2) Vibrations of the molecules (i.e. acoustic mode lattice vibrations) 
3) Internal vibrations of the atoms within each molecule (i.e. optical mode lattice vibrations) 
4) Partial rotation of the molecules 
5) Excitation of upper energy levels of the molecules 
6) Miscellaneous effects (i.e. Frenkel and/or Schottky defects) 

The acoustic modes of the lattice vibrations will be dominated by the vibration of the Uranium atoms, due to their 
high mass. The optical modes of the lattice vibrations will be dominated by the Oxygen atoms. Partial rotation of 
U02 molecules does not occur due to the fact that the crystal structure of U02 does not allow for molecular rotation 
on any significant scale. This assumption is justified on the basis that the heat capacity of urania can be fully 
described without any terms modelling molecular rotation. Excitation of upper energy levels does not occur until the 
fuel reaches very high temperatures, i.e.> 4500 K (see Reference [4]). 

Cp due to Lattice Vibrations and Lattice Dilation in U02±x 

Lattice vibrations are an important contributor to specific heat. Einstein's formalism, which is typically used in 
developing correlations for the heat capacity of U02, assumes that all of the oscillating particles have the same 
frequency of oscillation, vE. lfwe define 0E = h·vElks, then the expression for Cv is: 

( 2) 
where: 

is Boltzmann's constant [ 1.3 80662 · I 0-23 J/K] 
is the "atomic density", i.e. number of atoms per kg in the lattice [kg· 1J 

This model only applies to atomic vibrations in which the distribution of vibrational frequencies is such that the 
approximation of one average vibrational frequency is valid, such as is the case for optical phonon modes which 
have a very narrow band width. With the large mass difference between the Uranium and Oxygen atoms and with 
the strong bonding between these atoms, U02 probably has such narrow band width optical modes. Optical modes 
are more important at high temperatures than they are at low temperatures. 

As stated above, the Einstein formulation is usually used in developing heat capacity correlations for U02• Another 
model for heat capacity due to harmonic lattice vibrations is due to Debye. This model has a characteristic 
temperature, the Debye temperature, 0 0 . This treatment gives an expression for Cv as follows: 

C, =9 N k8 ( 0TJ J:•" r•,;, d, 

( 3) 

where: 
z is the expression, h·v/(2·B·k8 -T) 
0 0 is the Debye temperature [K] 

Both the Debye and Einstein models of heat capacity are approximations. Based on measurements of atomic 
vibrations, Willis [5] has proposed a combination model in which the vibration of the U atoms is described using the 
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Debye fonnalism and the vibration of the O atoms using the Einstein fonnalism. This is based upon the observation 
that the characteristic temperatures of U02 can be different, depending upon the type of excitation (i.e. optical or 
acoustic modes). This is the approach selected for use in the present model, as it does not require fitting to 
experimental data, but uses independently detennined values of 0E and 0 0 , along with the assumption that the 
acoustic modes are due to vibration of U atoms and the optical modes are due to vibration of O atoms. The 
characteristic temperature for the optical modes, 0E, has been detennined to be 542 K in Reference [6] and the 
characteristic temperature for the acoustic modes, 0 0 , has been detennined to be 182 Kin Reference [6]. Therefore: 

where: 
X 

N(x) 

( 4) 

is the stoichiometric deviation [O/U-2] 
is the atomic density corresponding to this stoichiometric deviation [(atoms) per kg] 

There are higher-order effects (anhannonic effects) which cause the lattice vibration component of Cv not to follow 
the fonn outlined above. In addition, this model is intended to calculate Cp, which is obtained from 
cp =CV+ (a2 ·V/~)-T 

Anhannonic vibrations add a term to the heat capacity which is approximately linear in temperature, and the 
constant of proportionality, Canh, has been detennined to be 3.8144· 10-3 J/(kg·K2) in Reference [7]. Reference [8] 
tabulates values of (a2 ·V/~)-T for 100%TD U02 over the temperature range 300-2500 K. These data can be fit to a 
quadratic equation which is constrained to pass through 0 J/(kg·K) at OK. These effects (anharmonicity and the 
relationship between Cv and CP) result in the following additional terms to the equation for the heat capacity: 

2 
cadd =C ·T+ Cd! ·T+Cd2 -T 

p anh l - p 

( 5 ) 
where: 

is the addition to the heat capacity due to anharmonic vibrations and lattice dilation [J/(kg·K)] 
are the coefficients describing the contribution due to lattice dilation (C/CP relationship): 
[Cd1 = (3.1121 ± o. 1242)• 10·1 J/(kg·K2

), cd2 = (l .4760 ± 0.0063)· 10-s J/(kg·K1)J 
p is the fractional porosity of the U02 

Hence, the expression for CP due to lattice vibrations and dilation in U02±x is: 

( 6) 

Cp due to Electron Defects in U02±x 

To a first approximation, Schottky defects are linear in temperature, and the constant of proportionality (C,0h) has 
been determined in Reference [7] to be equal to 1.081 · 104 J/(kg·K2

). Deviations from stoichiometry are assumed to 
have a negligible impact on this value, since it involves a correction to an effect which is itself only of second order 
in importance. 

Cp due to Small Polaron Excitation in U02±x 

For U02 temperatures > 2000 K, the contributions to heat capacity described in the above sections do not 
completely account for the observed heat capacity of U02. The difference can be seen when experimental data for 
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UO2 enthalpy is plotted along with the enthalpy which would be predicted based on the processes described above. 
Note that enthalpy is the integral over temperature of the heat capacity. Figure 2 shows this difference for the 
experimental data of Hein and Flagella (Reference [9]). This difference indicates that there is another process (or 
group of processes) which absorb energy as temperatures increase into this range. 

One physical process which occurs in UO2±x in this temperature range is the thermally induced disproportionation of 
the cation (i.e. the U ion) sub-lattice, which is shown by the following equation 

2u4+ ~ u5+ + U3+ 

( 7) 

This process is referred to as small polaron excitation, because the extra electron and hole on the U3+ and us+ ions, 
respectively, induce local polarisations of the lattice which act to screen the Coulomb interactions between the 
charges and the lattice. These screened charges, or small polarons, can hop from one cation site to another 
(Reference [IO]). So this process is dependent on the presence of electron and/or hole charge carriers and upon the 
U cations being in their lattice positions. This process has been shown to be able to explain the electrical 
conductivity and Seebeck coefficient of UO2+x (Reference [ 11 ]). The magnitude of the effect on the heat capacity is 
shown in this section to be sufficient to explain the excess heat capacity for 2000 K < T < 2670 K. The heat capacity 
for temperatures above 2670 K must be dealt with differently than for temperatures below 2670 K. The assumption 
that this process is active is equivalent to assuming that UO2 is a Mott insulator. 

The electrons and holes which are generated by the disproportionation reaction add two energy bands to the 
electronic energy spectrum of UO2, at Eu and E1• These two bands are separated by an energy gap LiU [J]; 
LiU = E3 + Es - 2·E4 = Eu - E1• The numeric subscripts identify the U cations involved. 

The molar concentrations of electrons and holes will obey the following equations (which are based on the law of 
conservation of charge and on the principles of thermodynamic equilibrium, respectively): 

where: 
n 
p 
LiF 

LiS 

p=n+2·X 

n · p (-LiF) =exp --
(l-n-p)2 k 8 ·T 

is the molar concentration of electrons, i.e. ofU3+ ions [I/mo!] 
is the molar concentration of holes, i.e. ofus+ ions [I/mo!] 
is the change in (Helmholtz) free energy associated with the reaction in Equation ( 7 ); 
LiF = LiU - T·LiS [J]( per ion) 
is the entropy difference associated with the reaction [J/K](per ion) 

( 8) 

(9) 

In order to determine the heat capacity from this process, use is made of the thermodynamic identity: 

where: 
f'P 

C ,p 
V 

Nu 

C sp =-T·(82Fsp) 
V oT2 

V 

( 10) 

is the Helmholtz free energy per kg UO2 in the system due to the reaction defined by Equation ( 7 

), [J/kg]; f 5
P =LiF·{Nu ·(I-n-p)/2} 

is the component of the heat capacity due to small polaron excitation [J/(kg·K)] 
is the number ofU ions per kg UO2 [atoms/kg] 

Using Equation ( 9 ) to define LiF and substituting into Equation ( 10 ), we obtain: 
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Nu ct
2 l( ) [(1-n-p}

2

]} C sp = - - · k 8 · T · -- 1- n - p · T · In --'-----'--
v 2 dT2 n·p 

Evaluation of the above derivative gives the following expression for c:P (note that dp = dn ): 
dT dT 

[
(J-n-p)- 2 ·T· dp]·[ 4 + n+p]· dp +[4 + (1-n-p)·(n+p)]·[dp +T· d

2

p] 
dT 1-n-p n-p dT n·p dT dT 2 

( 11 ) 

C sp = Nu·ks·T 

v 2 [ dp d
2
p] [(1-n-p)2] [2·(1-2-n-2-p) (l-n-p)·(n+p)]·T-(dp)

2 

+ 4--+2-T·-- ·In-'-----'--+ 
dT dT2 n · p n · p n 2 . p 2 dT 

( 12) 

There are two unknown parameters implicit in Equation ( 12 ): iiU and LiS. These must be determined by fitting to 
experimental data, e.g. the enthalpy measurements of Hein and Flagella (Reference [9]), after subtracting the 
contributions to the enthalpy due to the effects of harmonic and anharmonic vibration, lattice dilation and Schottky 
defects. These two parameters (LiU and iiS) can also be determined by fitting to experimental data on the electrical 
conductivity of UO2+x· Winter has shown that cr, the electrical conductivity of UO2±x> can be described by the 
following: 

( )

2 
Co- e iiE/ k T cr=-· - -(n+p)-(1-n-p)·e < s· l 
T k 8 

( 13 ) 
where: 

4-v-k 
is a constant; Co- = 8 [W/(m·K)] 

ao 
is the electron charge [ l .6021892· I 0- 19 C] 
is the electron mobility activation energy [J] 

V is related to the electron jump frequency, ffi, via w = V · exp(-E / (k · T)) [l/s] 

a0 is the lattice constant [m] 

The unknown parameters in Equation ( 13) are iiU, LiS, LiE and C0 • Winter proposes values for these parameters of 
iiU=2 eV, dS=2·k8 , LiE=0.3 eV and C0 =2.83 W/(m·K). These data allow the predicted electrical conductivities to 
exactly match the experimentally-derived correlation defined by Aronson (Reference [12]). However, these values 
do not provide an acceptable fit to the electrical conductivity data of Killeen (Reference [13]) at x=0.005, nor to the 
enthalpy data of Hein and Flagella (x = 0.003). However, using the values of the parameters from Winter's paper as 
a starting point, a set of four values can be found which results in predictions that agree with all three published 
works within their experimental uncertainties. In order to do this, numerically-determined best fits to each separate 
data set were first found and then values within the range of these variables were selected such that the agreement to 
Aronson's, Killeen's and Hein & Flagella's data were all equally good. The resulting values are dU=4.33· 10·19 J 
(2.7 eV), LiS=2.62· J0·23 J/K {l.9·k8 ), iiE=4.81 · I0·20 J (0.3 eV) and C

0
=3.71 W/(m·K) 

Figure 3 shows a comparison between the experimentally-based excess enthalpy and the enthalpy contribution from 
the integral of Equation ( 12 ) using iiU=4.33· J0· 19 J and LiS=2.62· J0·23 J/K. The graph shows the enthalpy due to 
small polaron excitation for the uncertainty in the stoichiometric deviation as quoted in Hein & Flagella's work (x = 
0.003 ± 0.003). Agreement is within the experimental error. 

Figure 2 shows the impact of the small polaron contribution to enthalpy (the integral of Equation ( 12 )) on the 
agreement between experimental heat enthalpy data due to Hein and Flagella (Reference [9]) and the enthalpy 
determined based on the integral of the heat capacity model. Addition of this contribution improves the agreement 
with the experimental data. 
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Figure 4 shows a 3-D surface plot of Equation ( 12) for a range of stoichiometric deviations and temperatures. The 
graph shows that stoichiometric deviation can have a significant impact on this component of the heat capacity. 
Functionally, Cv'P(x, T) = Cv'P(-x, T). Note that the values plotted for temperatures above the melting point are only 
of academic interest, since this model assumes that the U sub-lattice is present to interact with the hopping electrons. 
Once the fuel has melted, this would of course not be true and Equation ( 12) would no longer apply. 

Hence, the heat capacity ofUO2±x due to lattice vibration, lattice dilation, Schottky defects and small polarons is: 

[ 
1 (3-T

3) 0o/T z
4 

-e
2 

2+x (eE) 2 
e

0
E/T l 

CP =3-N(x)·ka. -3-. --3 ·Jo ( )2 dz+-3-. -T .( )2 +Canh -T +Csch -T 
+X E) 0 ez-1 +X e0E/T -1 

[ (l - n - p)- 2 · T · _dp] -[-4-+ _n_+_p]· _dp 
dT 1- n - p n · p dT 

+[4-_dp +2·T--d2p]·ln[...;__(1-_n---'-p)2] 
dT dT2 n·p 

[ 
(l-n-p)·(n+p)] [dp d

2
pl + 4+------ · -+T---

n·p dT dT2 

[ 
2 • (l - 2 • n - 2 · p) (l - n - p) · ( n + p) l ( dp) 

2 
+ ------------- ·T· 

n-p n2 -p2 dT 

( 14) 

Heat Capacity of UO2±xfor 2670 K < T < T melt 

In 1968, Bredig predicted that UO2 should undergo an order-disorder transition (see Reference [ 14]), i.e. a co­
operative process resulting in a loss of the long range order of the Oxygen ions on the UO2 lattice. The transition 
was predicted to be of second order (i.e. a 'A transition). In the case of UO2, it is usually referred to as the "Bredig 
transition" and has been experimentally determined to occur at 2670 K in unirradiated, stoichiometric UO2 

(Reference [15]). The Bredig transition is associated with a "peak" in the heat capacity, in which the heat capacity 
appears to diverge, which is typical of such phase changes. However, this peak is very narrow in width, and the 
energy associated with the transition is relatively small. Therefore, the energy associated with this peak is ignored in 
this model. Additionally, since irradiation tends to favour transitions to a more disordered state, the peak is also 
likely to be somewhat "blurred" for fuel which is in a neutron flux. 

Figure 5 shows the experimental enthalpy data from Hein and Flagella in the temperature range above this 
transition, along with the integral of Equation ( 14 ). Above the transition temperature of 2670 K, the heat capacity 
appears to be constant. The small polaron contribution to the heat capacity should be approximately constant in this 
temperature range for the given stoichiometric deviation. Equation ( 14) does yield an approximately constant heat 
capacity in this temperature regime, but its value is too low to be in agreement with the experimental data. 

Since the Bredig transition does not affect the U sub-lattice, the small polaron contribution to the heat capacity 
should still exist in this temperature regime. Therefore, the small polaron contribution to the heat capacity is still 
applicable "unmodified", for temperatures between the Bredig transition and the melting point. The balance of the 
heat capacity in this temperature regime is of unknown functional form. If the small polaron contribution to the 
enthalpy is subtracted from Hein and Flagella's data and a linear best fit is made, an empirical heat capacity due to 
all other potential contributors can be determined. The value of this heat capacity component is equal to the slope of 
the best fit line (556.8 J/(kg·K)). Hence the heat capacity in this temperature range is modelled by: 

cpl =C/P + 556.8J/(kg-K) 
T>2670 

( 15 ) 
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Figure 5 shows a comparison of the enthalpy data of Hein and Flagella in the temperature range between 2670 K 
and the melting point, along with the integrals of Equation ( 15 ) and Equation ( 14 ). The difference between the 
enthalpy data points and the integral of Equation ( 15 ) is due to the fact that the enthalpy associated with the peak 
in heat capacity at the Bredig transition temperature is not modelled. The difference is within the experimental 
uncertainty in the data, however, and so any estimate of the enthalpy associated with the peak would be highly 
uncertain . 

Non-stoichiometry could potentially have an impact on the temperature at which the Bredig transition occurs. A 
theoretical treatment of this is given in Reference [4], which indicates that the Bredig transition temperature 
increases with the magnitude of the stoichiometric deviation, regardless of its sign. This prediction is verified by 
experimental evidence presented in the reference. Therefore, for non-stoichiometric UO2, the increasing heat 
capacity due to lattice dilation, Schottky defects, and anharmonic vibrations will presumably continue to higher 
temperatures. It is difficult to quantify the magnitude of the change in the Bredig transition temperature with 
stoichiometric deviation, however, so it will be assumed for this model that the temperature of the Bredig transition 
remains unchanged for UO2±,· 

Latent Heat of Fusion of UD2±x 

For near-stoichiometric UO2 (x = 0.003 ± 0.003), Hein and Flagella's enthalpy measurements (see Reference [9]) 
can be used to determine the magnitude of the latent heat of fusion. Figure 6 shows the enthalpy data from this 
reference. The increase in enthalpy at the point of melting is clear. The figure shows that the latent heat of melting 
of nominally stoichiometric UO2 is 282.184 ± 9.472 kJ/kg. For this model, it is assumed that deviations from 
stoichiometry and burnup in the range characteristic of CANDU ( < at%) have a negligible effect on the magnitude 
of the latent heat of fusion. 

Cp of Molten UD2±x 

There is very little experimental data on the heat capacity of molten UO2. Aside from the data of Ronchi et. al. 
(Reference [ 16]), there are only 10 experimental data points from two other experiments (References [9] and [ 17]) 
covering the temperature range from 3141 K to 3558 K. The scatter of these data is sufficiently high with respect to 
the temperature range covered that it is impossible to determine even the sign of dC/dT. Therefore, the data from 
Reference [16] is used for the development of the model for heat capacity of molten UO2• 

Along with the experimental data, Reference [16) provides a functional best fit to the experimental data which, 
while closely reproducing a fourth-order polynomial best fit to the data, formally represents the descending flank of 
a thermally activated specific heat contribution, plus another thermally activated term which is not significant until 
temperatures >4500-5000 K are achieved. The functional form of the expression for heat capacity of molten, 
stoichiometric UO2 is: 

07 012 l.l · 1 15500/T LO· 1 . e-35500/T 
= 3·N ·k 8 +~·e + T 2 

( 16) 

Figure 7 shows the heat capacity data compared to the above expression. Agreement is well within the experimental 
error. 

Hyper- and hypo-stoichiometric UO2 do not melt congruently. Therefore, it is not physically accurate to speak of 
temperatures below or above the melting point with non-stoichiometric fuel. It is only appropriate to speak of 
material at a specific temperature with a specific mass fraction being solid (or a specific mass fraction liquid). The 
overall heat capacity will be the mass-weighted average of the heat capacities of the solid and liquid fractions. As 
fuel burnup (co) increases, the addition of fission product "impurities" causes the solidus temperature to decrease, 
analogous to the effect of stoichiometric variations . 

The expression for the heat capacity of liquid UO2 has three terms: 
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l) The Dulong-Petit heat capacity, due to atomic vibration, 3·N·k8 

2) A term which represents the reduction in CP due to the saturation of the additional thermally-activated 
processes which are important for solid phase fuel, 1.1 · l 08/T2·e 15500rr 

3) A term which represents excitation of electrons in the 2p orbitals, l.0· l0 12/T2·e·35500rr 

The first term will be altered by non-stoichiometry as described by the first term of Equation ( 6 ). Hence, this term 

becomes 3·N(x)·k8 • 

The reduction in heat capacity described by the second term in equation ( 16) is associated with the melting process. 
The term must be "corrected", therefore, so that the reduction is consistent for cases in which the amounts by which 
the actual temperature exceeds the liquidus temperature are the same. 

The third term in equation (16) is not driven by the melting process. It represents excitation of electrons between 
orbitals, and so should be, in principle, affected by the presence of additional O atoms. However, since the orbitals 
in question (2p) are relatively deep in the electron structure ofU, the impact is assumed to be negligible. 

Therefore, the expression for the heat capacity of irradiated liquid UO2±x is: 

C I =3-N(x)-kB + l.l-107 -el5500/T'(x,w) + 1.0-1012 -e-35500/T 
P T>TL{x,w) T'(x,ro)2 T2 

( 17) 
where: 

T'(x,ro) is defined as TL(0, 0) + {T-TL(x, ro)} [K] 
T L(x, ro) is the liquidus temperature for the fuel as a function of stoichiometric deviation and bumup [K] 

Overall Model of Fuel Heat Capacity 

The fuel heat capacity model consists of three different models for different temperature ranges. For temperatures 
up to 2670 K, Equation ( 14) applies. For solid urania above 2670 K, Equation ( 15 ) applies. For liquid urania, 
Equation ( 17 ) applies. For mixed phase situation, the mass-weighted average of the heat capacities for solid and 
liquid are used. Figure I plots the overall model of fuel heat capacity as a function of temperature for various values 
of the stoichiometric deviation, porosity and bumup. 

Thermal Conductivity of U02+, 

Thermal conductivity is a measure of the "ease" of internal transfer of energy between regions of a material. This 
energy can be transferred through the following mechanisms: 

l) Lattice vibrations (phonons) 
2) Electron-hole movement 
3) Radiant heat transfer 

Phonon Contribution to Thermal Conductivity 

The thermal conductivity due to lattice vibrations (or phonons) can be expressed as the following: 

k = p. C Ian . u . ..?:_ 
p V 3 

( 18) 
where: 

p 
Cvlatt 

u 
A, 

is the contribution to thermal conductivity due to phonons, [W/(m·K)]. Note that, below 1500 K, 

k'"'kP 
is the density [10960 kg/m3 for 100% TD UO2] 

is the phonon contribution to the specific heat at constant volume [J/(kg·K)] 
is the mean phonon speed [ m/s] 
is the phonon mean free path [m) 
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The density can be determined using a fuel thermal expansion correlation such as is found in Reference [18). 

For application in this context, the above expression should only be used in the case of solid urania. If the material 
is liquid, there will still be atomic vibrations, but they will not propagate spatially due to the lack of a rigid atomic 
lattice. Therefore, for liquid UO2, kP = 0. 

Unfortunately, the expression u·A./3 consists of two parameters which cannot be determined via direct measurement. 
However, this expression is dominated by two main contributions for temperatures below 3000 K (Reference [ 18)). 
These contributions are the deflection or scattering of phonons from lattice defects, and phonon self-scattering. 
These processes are functions of the stoichiometric deviation of the fuel and its impurity content. With the 
assumption that these two processes dominate the phonon mean free path, Equation ( 18 ) becomes: 

where: 

P ·C latt 

k = V 

P A(x,w)+B(x,w)-T' 
( 19) 

A(x,w) is a factor proportional to the point defect contribution to the phonon mean free path [m·s/kg) 
B(x,w) is a factor proportional to the phonon-phonon scattering contribution to the mean free path 

[m·s/(kg·K)) 
T' is the temperature or 2050 K, whichever is less [K) 

The factors A(x,w) and B(x,w) are determined by deriving correlations to thermal conductivity data. See below for 
details of their derivation. T' is used in this equation instead of T because, at 2050 K, the mean free path of the 
phonons becomes about equal to the inter-atomic distance. Therefore, following Reference [ 18], the temperature 
used is limited to this value. 

Equation ( 19 ) gives the expression for non-porous material. In reality, UO2 is porous. Pores have a different 
thermal conductivity than the UO2 lattice and this must be accounted for. This is done using either the modified 
Loeb equation or the Maxwell-Euken equation. The Maxwell-Euken equation is considered to be superior to the 
modified Loeb equation (Reference [ 19]) and is used in this model. The Maxwell-Euken equation is as follows: 

where: 

j) 

kP 1- p 

k 100 l+j)-P 

( 20) 

is the thermal conductivity due to phonons in porous material [W/(m·K)] 
is the thermal conductivity in a sample of the material with no pores [W/m-K)) (see Equation ( 19 
)) 
is a factor which depends on the shape, distribution and composition of the pores 

The thermal conductivity of UO2 is commonly measured indirectly. This is done by measuring the thermal 
diffusivity, a: 

where: 
is the thermal conductivity [W/(m·K)] 
is the heat capacity [J/(kg·K)] 

( 21 ) 

For T<l 773 K, k a::: kP and CP a::: Cv1
•

11
• Using this fact and Equations ( 19 ) and ( 20 ), it is easy to show that the 

thermal diffusivity in this temperature regime can be expressed by: 

( 1-P) l 
a= l+P·P .A(x,w)+B(x,w)-T 

( 22) 
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As mentioned in above, this model uses a correlation to determine the value of 13- In order for the correlation to be 
applicable to CANDU nuclear fuel, the experimental data on which the correlation is based must be for fuel as 
similar as possible to CANDU fuel. For this reason, SIMFUEL data from Reference [20] is selected as the basis for 
determining the experimental constants in Equation ( 22 ). This model will follow Reference [ I 8] and use an ~-
expression for 13 of the form: 

( 23) 

Due to the nature of the variation of l3(T) with T, this correlation implies that 13(T) will eventually become less than 
-1 as the temperature increases. This leads to the implication that, above a certain temperature, fuel with porosity 
has a higher thermal conductivity than UO2 at 100% TD. Reference [18] deals with this by using a "cutoff' 
temperature beyond which 13 is held constant at a value of -1, with a linear interpolation over a limited temperature 
range around this cutoff. 

In order to determine the functional form of A(x,ffi) and B(x,ffi ), the values of A and B for a range of stoichiometric 
deviations and simulated bumups from Reference [20] were used as the starting point. The values of A and B in 
Reference [20] are peculiar to the assumptions and measurements made in Reference [20], so they are not simply 
used in this model. Instead, the values of A and B from Reference [20] will be used to determine the appropriate 
functional form of the expressions for A(x,ffi) and B(x,ffi), and then the coefficients of the functions will be 
determined so as to be consistent with all of the elements of this model. Table 1 and Table 2 reproduce the values of 
A and B reported in Reference [20]. If the data for A are graphed, and a term of the form A 1 + A2·x is removed from 
them, what is left appears to follow a power law relationship, linear in x and ffi. Hence, a valid empirical expression 
for A(x,ffi) is: 

( 24) 

If the data for B are plotted, it can be seen that the dependence on x and ffi does not appear to be strong and there is 
a good deal of"scatter" in the relationship. However, there does seem to be some dependence, so it is assumed that 
x and ffi result in a first-order correction to the value ofB, leading to the following empirical expression for B(x,ffi): 

B(x,ffi) = B1 + B2 ·ffi + B3 ·X 

( 25) 

With these functional forms for l3(T), A(x,ffi) and B(x,ffi ), an iterative technique was used to determine the best fit 
values of l3 1, 132, A,, A2, A3, A4 , A5, B1, B2 and B3 using the data from Reference [20]. The initial values of 13, and 132 

are from Reference [ 18] and the initial values of the other eight unknowns are the best fit values for the values of A 
and B in Table 1 and Table 2. The experimental data consist of 136 measurements covering stoichiometric 
deviations from 0.0 - 0.084, simulated bumups from O - 1800 MW·h/kgU (cf usual CANDU average exit burnup: 
-190 MW·h/kgU) and densities from 10.512 - 10.776 g/cm3 (cf CANDU UO2 density specification: 10.45 - 10.75 
g/cm3

). 

An additional constraint was placed on the solution. Recall that Equation ( 23 ) is not applied at all temperatures. 
Above the "cutoff' temperature, the value of T used in Equation ( 23 ) is the "cutoff' temperature. In Reference 
[ 18], the "cutoff' temperature is near 1773 K. The data in Reference [20] show a tendency for higher densities to 
result in higher thermal conductivities even up to 1773 K, implying that the cutoff temperature is some temperature 
~ 1773 K. 

If the "cutoff' temperature were to be in the temperature range of the experimental data used to derive the values of 
the coefficients for l3(T), A(x,ffi) and B(x,ffi ), it would greatly complicate the solution process, due to the non­
linearity which would be introduced. Therefore, in order to make the numerical solution process more tractable, a 
constraint was added to the numerical solution that the "cutoff' temperature had to be ~ l 773 K. The values of the 
fitting parameters with this constraint are given in Table 3. The "cutoff' temperature implied by the values of 13 1 and 
132 is I 773 K. 

-
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The standard error of the fit to the data with the values of the fitting parameters given in Table 3 is 4.3%, which is 
similar to the quoted experimental error for the data of 5%. The maximum error for any particular data point is 
10.4%. Figure 8 shows a plot of predicted vs. measured thermal diffusivities using the best fit values of the fitting 
parameters. Agreement is excellent. Confirmation that the deviations between the model predictions and the 
experimental data can be ascribed to random error is found in Figure 9, which compares the distribution of the 
relative errors in the predictions with the normal distribution. A x2 test shows that the difference between the actual 
error distribution and the normal distribution is not statistically significant. 

This error analysis demonstrates that the correlations derived for p, A and B are sufficiently close to the "true" 
relationships that the differences between model prediction and the experimental data in Reference (20] can be 
ascribed to stochastic processes. This conclusion lends support to extrapolation of the correlations for A and B 
beyond the ranges of stoichiometric deviation and density for which they were derived, so long as the structure of 
the material is still U02±x· 

The derivation of correlations above has been restricted to fuel which is either nominally stoichiometric or hyper­
stoichiometric. It is important to also consider hypo-stoichiometric fuel. p is not dependent on stoichiometric 
deviation, so application of the relation for P(T) is not restricted to hyper-stoichiometric fuel. A and B, however, are 
dependent on stoichiometric deviation and their behaviour in this regime must be assessed. 

The stoichiometric deviation affects A and B because of the presence of lattice defects. In U02+,, the defects are 
interstitial O ions; in U02.x, they are O vacancies (Reference [2 I]). In either case (i.e. hyper- or hypo-stoichiometric 
fuel), the molar density of defects is the same and so, the number and distribution of "order defects" is the same. 
The assumption is therefore made that A(x,w) = A(-x,w) and B(x,w) = B(-x,w). This alters the functional form for A 
and B slightly: 

( 26) 

( 27) 
This modification allows the expression for kP to be applied to hypo-stoichiometric fuel. 

If the assumptions underlying Equations ( 26 ) and ( 27 ) are reasonable, one would expect that, as long as the 
stoichiometric deviation is above the [U + U02_,] phase boundary, the thermal conductivity of hypo-stoichiometric 
urania would be similar to the thermal conductivity of hyper-stoichiometric urania whose stoichiometric deviation 
was of the same magnitude. Reference [22] shows the experimental results of Hetzler, which were performed for 
urania with an 0/U ratio of 1.98 and 1.97 (i.e. x = -0.02 and x = -0.03) and compares them to the results of Howard, 
Ross and Belle for slightly hyper-stoichiometric U02+x with x in the range between O and 0.18. The results show 
that, below a certain threshold temperature which appears to be close to the [U + U02_x] phase boundary, the thermal 
conductivity of hypo-stoichiometric urania is much higher than that of similarly hyper-stoichiometric material. 
However, above this temperature (i.e. in the U02.x phase), the thermal conductivity falls to a value near that 
observed in hyper-stoichiometric urania. This indicates that the conceptual model underlying the extension of 
Equations ( 24) and ( 25) to the forms shown in Equations ( 26) and ( 27) is a reasonable one. 

Small Polaron Contribution to Thermal Conductivity 

The second significant contributor to the thermal conductivity of U02±x fuel is electron-hole transport. Some 
treatments of thermal conductivity of urania use an expression for this contribution to the thermal conductivity 
which assumes that the fuel behaves as a semiconductor. However, as discussed above, urania is a Mott insulator, 
rather than a semiconductor. Thus there is no Weidmann-Franz term as is the case for semiconductors. This yields 
an expression for the thermal conductivity due to electron-hole transport of: 
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( 28) '""" 
where: 

is the thermal conductivity due to electron-hole transport [W/(m·K)] 
is the partial de electric conductivity due to electron transport [ 1/(Q·m)] 
is the partial de electric conductivity due to hole transport [ 1/(Q·m)] 

Reference [ 11 J provides a theoretical technique for evaluating the above expression for a given temperature and 
stoichiometric deviation, x. This treatment results in the following expression for this component of the thermal ~ 
conductivity of UO2±x: 

where: 

V 

4-v-k 8 is a constant; Ca = --- [W/(m-K)J 
ao 

is related to the electron jump frequency, ffi, via ffi = v-exp(-E I (k 8 -T)) [ 1/s] 

is the lattice constant [m] 

Note that the above expressions for ke are only valid for solid phase urania. For liquid material, the "hopping" mode 
of electron and hole transport would not occur, since there would not be a U cation sub-lattice in place to provide 
the lattice polarisations. However, this would imply that electrons produced would be more mobile than if the U 
sub-lattice were there. Therefore, applying the above formulation to the determination of ke in liquid urania should 
result in an under-prediction, allowing for conservative (from the point of view of fission product release) over­
estimates of fuel temperature. 

The values of the parameters C.,, AU, AS and AE used in the thermal conductivity model are identical to those used 
for the heat capacity model described above. 

Radiative Contribution to Thermal Conductivity 

The final contributor to the thermal conductivity is radiative heat transport. UO2 will have a contribution to thermal 
conductivity which is of the following form (see Reference [23]): 

where: 

k =~-[ crs ]-N 2 (A T)·T3 
rad 

3 as (A, T) ' 

cr, is the Stefan-Boltzmann constant 
a,O .. ,T) is the spectral absorption coefficient 
N(A,T) is the index of refraction 

( 30) 

The typical approach is to assume that N(A, T) is independent of temperature and wavelength, and to average a, over 
the Planck distribution of the radiation to obtain a Rosseland absorption coefficient (temperature dependent only; 
aR(T)), yielding the following expression for k,.d: 

k d =3·!0-11 _[~]-T3 
ra aR (T) 

( 31 ) 

Hyland (Reference [23]) reports that the assumption that N is independent of"' and T is justified, based on the 
directional spherical reflectivity data of Bober et al. (Reference [24]), and that the value ofN is 2.25. Experimental 

-J 

, 

-

.. 



... 
,. 

,. 

,,, 

,. 

,. 
,. 

-
.. 

333 

data on aR(T) is highly uncertain, especially in the high temperature regime in which the radiative component of the 
thermal conductivity is important. Hyland has defined a lower bound on the possible values of aR(T), which will be 
referred to as aR min (T) (see Table 4). This set of data lead to the indicated upper bound values of k,ad· However, 
because of uncertainties in the values of a(A, T) beyond the absorption edge of the material, the values of aRmi"(T) in 
Table 4 have an uncertainty band of+ 1000% and -0%. Another way of putting this is that the best estimate of k,ad is 
I /2 of the value which would be obtained from the values of aR mi"(T) in Table 4, with an uncertainty of± I 00%. This 
leads to the following expression for k,.d: 

3.10-II [ N2 l 3 k =--·----T 
rad 2 a R min (T) 

( 32) 

The data for aR(T) in Table 4 can be easily fit to a power law. The best fit expression for the data is: 

a tn (T) = C 1 · exp( C 2 • T) 

( 33) 
where: 

has a value of 8750 m· 1 

has a value of7.5971 · J0·4 K 1 

The resulting expression for k,ad has an uncertainty of ± 100%. However, the theoretical basis is sound and the 
contribution of k,ad to the overall thermal conductivity is not dominant. Therefore, the effect is included in this 
model for thermal conductivity. Since this contribution to the thermal conductivity is related to the behaviour of 
photons in the fuel, it should not be significantly affected by changes in stoichiometric deviation or by bumup. Any 
such effect is assumed to be insignificant in this model. 

Effect of In-Reactor Flux on Thermal Conductivity 

When the urania is in the reactor, the flux will have an effect on the thermal conductivity. Damage to the lattice 
structure of the fuel (e.g. dislocations) will interfere with the propagation of phonons, reducing the thermal 
conductivity. However, annealing of these lattice defects will act to negate this effect, so that at high temperatures 
the effect of being in flux is negligible. Reference [22] shows the results of Clough and Sayers (Reference [25]), 
who determined the thermal conductivity of U02. These results clearly demonstrate that the thermal conductivity of 
U02 under irradiation can be broken into three regimes: 

I) T > 773 K: the thermal conductivities of unirradiated fuel and fuel undergoing irradiation are the same. 
2) 523 K ~ T ~ 773 K: the thermal conductivity of fuel undergoing irradiation is approximately constant, 
while the thermal conductivity ofunirradiated fuel increases with decreasing temperature. 
3) T < 523 K, the thermal conductivity curve is very similar to the curve for unirradiated fuel at 
temperatures -150 K higher. 

This model adopts a very simple expedient to account for the effect of in-reactor flux on fuel thermal conductivity. 
For temperatures below 773 K, the thermal conductivity at 773 K will be used. This ignores the observed trend on 
thermal conductivity at temperature below 523 K, but such temperatures are of little interest in safety analysis and 
the under-prediction implicit in this model's approach is considered to be acceptable. 

Effect of Mixed Solid and Liquid Phase on Thermal Conductivity 

Non-stoichiometric urania has separate solidus and liquidus temperatures. Because of this, it is possible to have 
states in which a urania sample may be of mixed phase; i.e. the sample may contain both solid and liquid material at 
a constant temperature. 

In this event, the thermal conductivity of mixed phase urania will be determined based on the approach described in 
Reference [26]. 
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To apply this approach, the thermal conductivities of both the solid and liquid phases in the fuel are determined. 
Next the phase whose volume fraction is >50% is labelled as the continuous phase; the other phase is labelled the 
dispersed phase. If the solid urania is the continuous phase, the effective thermal conductivity is given by: 

where: 

C' 

C'·(kd -kc) 1-B 

k, + B (k, - k,) }+k, 
is the effective thermal conductivity of the two-phase mixture (W/(m·K)) 
is the thermal conductivity of the continuous phase (W/(m·K)) 
is the thermal conductivity of the dispersed phase (W/(m·K)) 

= ,J3•Vd /2 

= 4 · .J2 I ( 3 · V d) 
Vct is the volume fraction of the dispersed phase 

If the liquid urania is the continuous phase, the effective thermal conductivity is given by: 

Overall Mode/for Fuel Thermal Conductivity 

]

-l 

( 34) 

( 35) 

Based on the discussion in the above document, the thermal conductivity of a single-phase sample of Uranium 
dioxide fuel can be expressed by: 

- --- . --------+ . -- ____ __;;._. e B + ---k -( 1-P) p·Cv
1311 

C ( ~u )
2 

n·p·(l-n-p) 6E/(k -T) 3.10-
11 

·[ N
2 

]·T3 
] + /3 • P A(x,co)+B(x,co)•T " k 8 ·T n+p 2 aRmin(T) 

( 36) 

In the case of a mass of·fuel which is of mixed solid and liquid phases, the above expression may be evaluated 
separately for the solid and liquid phases and Equations ( 34 ) and ( 35 ) used to determine the effective thermal 
conductivity of the overall mixture. 

Equation ( 36 ) is plotted in Figure IO as a function of temperature for various values of the stoichiometric 
deviation, porosity and bumup. Note that the effective thermal conductivity in the mixed solid/liquid phase region is 
not plotted. 
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X A (m·KIW) 
(UO2+,) 0 MW·h/kgU 675 MW·h/kgU 1800 MW·h/kgtJ 
0.0000 0.0911 0.1362 0.1858 
0.0069 0. 1022 0.1433 - '""· 
0.0350 0.2031 0.1997 0.2345 
0.0840 0.3669 0.3819 0.3844 

Table 1: Value of Coefficient A ink= (A+B·TY 1 from Reference [20] 

X B (m/W) 
(UO2+,) 0 MW·h/kgU 675 MW·h/kgU 1800 MW·h/kgU 
0.0000 2.35-10-4 2.12· 10-4 2.05• 10·4 

0.0069 2.33·10-4 2.17·10-4 -
0.0350 2.20· 10-4 2.23· 10-4 1.95·10·4 

0.0840 1.55· 10·4 1.34·10·4 1.34· I 0-4 

Table 2: Value of Coefficient B m k = (A+B·TY 1 from Reference [20] 

Constant Initial Estimate Final Value 

131 6.5 5.74 

132 -0.00469 K·l -0.00380 K·I -
A1 255800 s/m2 -434000 s/m2 

Az 11607000 s/m2 8530000 s/m2 

A3 4.752 5.65 -A4 4.62· 10·4 kgU/(MW·h) 1 .09· l o-4 kgU/(MW·h) 

As -15.955 -4.73 

B1 789 s/(m2·K) 804 s/(m2·K) 

B2 -5.26· 10·2 kgU·s/(m2·K·MW·h) -3.96· 10·2 kgU·s/(m2·K-MW·h) 
83 -3058 s/(m2·K) 2150 s/(m2·K) 

.. 
Table 3: lmttal Estimates and Best Fit Values of Unknown Constants m kP 

Temperature aRmin(T Max. k,·ad krnd 

(K) ) (W/(m·K)) (W/(m·K)) 
(cm·I) 

1000 190 0.08 0.04 ± 0.04 
2000 385 0.32 0.16±0.16 
3000 865 0.47 0.24 ± 0.24 

Table 4: Lower Bound Values ofaR(T) (after Reference [23]) and Corresponding Estimates ofk,ad 
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Figure I: Overall Model of Heat Capacity ofUO2±, and Heat Capacity ofU4O9 and UP8 
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Figure 5: Hein & Flagella's Enthalpy Data for Solid UO2003 Above 2670 K, Model Used for this Temperature 
Range and Extrapolation of Model for T<2670 K 
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Figure 6: Heat of Fusion for Near-Stoichiometric UO2 Based on the Enthalpy Data of Hein and Flagella 
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Figure 7: Heat Capacity of Molten UO2 (Ronchi et. al.) and Model for Molten Fuel 
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Figure 8: Predicted Thermal Diffusivity from Equation ( 22) vs. Data from Reference [20] 
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Figure 9: Comparison of Error Distribution from Comparison of Equation ( 22) to the Data in Reference [20] With 
the Normal Distribution (all data used) 
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Figure 10: Thermal Conductivity ofU02±<> According to the Model Presented in this Document 
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