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ABSTRACT 

CATHENA presently uses the Hanuell MA28 routines to solve the sparse matrices generated by 
the thennalhydraulics section ofthe code. The objective of this paper is to present a short 
overview of commonly used sparse matrix solution techniques, and eramine the potential benefits 
of using other solvers in CATHENA. A number of direct and iterative solvers have been tested on 
a stand-alone basis. Their perfiomnce was compared by solving CATHENA-generated 
non-positive definite, non-symmetric matrices taken from a variety of different simulations. The 
results of this preliminary investigation tend to indicate that some solvers may have advantages 
over the MA28 routines which could signifiantly enhance the peflonnance of CATHENA. 

1 INTRODUCTION 

The solution of systems of linear equations is one of the most important areas of numerical 
mathematics. A large number of different descriptions of physical problems can be reduced to a 
linear system of the form: 

Ax = b 

where x represents a vector of variables to be solved for, A represents the matrix of coefficients of 
the linear system, and b represents a vector of constants. 

The matrix A is often sparsely populated (less than 10% of the positions are occupied, often 
significantly less) and the problem can involve the simultaneous solution of a system involving 
millions of equations. Problems of such magnitude can seriously challenge the computational 
capabilities of a given computer. They can only be solved using numerical algorithms that take 
sparseness and structure into account, and use special storage and programming techniques. 

Matrices to be solved may have real or complex elements, may be symmetric or unsymmetric (for 
real matrices) or Hermitian or non-Hermitian (for complex matrices). They may be positive 
definite, banded, have a block structure, or be diagonally dominant. Depending on which of these 
characteristics a given matrix displays, special algorithms have been developed to solve the 



system of equations with the required accuracy. These algorithms save storage and computation 
time. Since research problems are typically working to the limit of available computational 
resources, exploitation of matrix sparseness can make the difference between solving and not 
solving a given problem. 

2. SOLUTION METHODS 

2.1 Direct Methods 

Direct methods yield the required solution with fixed number of arithmetic operations. At the 
heart of every direct method lies the Gaussian elimination process and the related triangular 
decomposition. Variants of the basic direct method differ primarily in the way the matrix A is 
stored, the details of the elimination process, the precautions used to minimize rounding errors, 
and the methods of refining solutions. 

Pivoting (exchanging rows and/or columns) often helps to assure the numerical accuracy and 
stability of direct methods by moving the largest elements into the diagonal. mically, attempts 
are made to minimize the fill-in of new non-zero values generated as a result of the solution 
process. Some routines offer a drop-tolerance to remove insignificant fill-in values and residual 
refinement to improve the accuracy of the final answer. Direct methods are noted for their relative 
robustness, ease of use, and ease of acquisition. Good general discussions of direct methods for 
sparse matrices can be found in the books by Pissanetzky [I], Duff et al. [2] ,  and Zlatev [3]. 

Iterative Methods 

Iterative methods begin with a starting vector xo ,  and compute a sequence of iterands xm for 
m = 1,2,3 ,  ... 

where xm +' is dependent only on xm , and starting value xo is not part of the method. 

A preconditioner is often used to help speed up the convergence of the iterations. The term 
derives its name from the idea that an improvement in the condition number of matrix A helps the 
iteration proceed. An undesirable side effect of this process lies in the potentially large amount of 
time that can be spent in the preconditioning stage. 

A variety of different methods exist, some of which only work for specialized classes of matrices 
or problems. Good generalized robust solvers are more difficult to find, and are often only 
available on a commercial basis. They can be complicated to use, and often include a large 
number of options which require the use of expert technical support. 

Nonetheless, iterative methods can be advantageous for sparse matrices since far fewer 
calculations are performed per iteration than are made during the solution using direct methods. 



Additional advantages exist if a good approximation to x is already available to accelerate the 
convergence. If the matrix has a block structure, this can also be used to help improve the 
efficiency of the iterative solver. Unfortunately, if a matrix is not positive definite, convergence is 
not guaranteed when iterative methods are used. Comprehensive summaries of iterative 
techniques can be found in the books by Ilin [4] and Hackbusch [5], and the article by Dongma, 
and van der Vorst [6]. 

2.3 Parallel Solvers 

Parallel solvers solve different parts of the matrix simultaneously. These methods also often take 
advantage of available vector processing, and typically avail themselves of methods developed for 
direct and iterative solvers. Two general approaches are used to solve matrices in parallel: 

1. Consider the inherent ability of the detailed coding to be performed in parallel, or by using 
vector processors. For example, row and column swapping might be done in parallel, or a 
section of the code might be rewritten to vectorize basic matrix operations. 

2. Divide the matrix into sub-groups that can be calculated separately. Some commonly used 
techniques include partitioning, matrix modification, and tearing. These methods tend to 
perturb the matrix, but matrix perturbation techniques may also be used to make matrices 
easier to solve. 

Parallel methods represent the forefront of development work in matrix solution. As new 
machines and hardware become available, more and more parallel methods are being explored. At 
this point in time, parallel solvers can be as varied as the hardware they are implemented on. 
Although no books have been written explicitly on parallel matrix solvers, books like those by 
Schendel [7] and Evans 181 include discussions of parallel methods. 

3. THE CATHENA CODE 

CATHENA (Canadian Algorithm for THEnnalhydraulic Network Analysis) is a one-dimensional, 
two-fluid thermalhydraulic computer code designed for the analysis of two-phase flow and heat 
transfer in piping networks. The CATHENA thermalhydraulic code was developed by MCL, 
Whiteshell Laboratories, primarily for the analysis of postulated accident conditions in CANDU@ 
reactors. 

The thermalhydraulic model in CATHENA is a one-dimensional, non-equilibrium two-fluid model 
consisting of six partial differential equations for mass, momentum and energy conservation - 
three for each phase. A first-order finite-difference representation is used to solve the differential 
equations, utilizing a semi-implicit one-step method in which the time step is not limited to the 
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material Courant number [9]. At each time step a sparse matrix is written and is currently solved 
using the Harwell MA28 sparse matrix solver which was developed in the early 1970s. 

When relatively small simulations are performed, and the order of the matrix to be solved n is less 
than 4000, less than 25% of the total simulation time is usually spent in the sparse solver. In 
general, the computational effort needed to assemble the CATHENA sparse matrix scales as 
0 {n} . In contrast, the effort needed to solve the sparse matrix is less than 0{n2) but still far from 
linear with n however, depending on the efficiency of the solver, and the sparsity and structure of 
the matrix [Z]. As a result, the fraction of the total time spent solving the generated sparse 
matrices increases as the size of the simulation increases. As shown in Figure 1, as the order of 
the matrix increases to greater than 17,000 more than 90% of the simulation can be spent in 
solving the sparse matrices, and the efficiency of the sparse solver can become the predominant 
factor affecting the computational efficiency of CATHENA. 

Although the CATHENA sparse matrices are non-symmetric, non-positive definite, and relatively 
stiff and intractable to solution, the MA28 routines have proven themselves~robust and reliable for 
more than 10 years. In the interim however, a number of potentially more efficient solvers have 
become available. In this study, 7 such solvers were obtained from public and commercial 
sources. A variety of different test matrices were generated by CATHENA. The size of the test 
matrices was varied from small to the largest possible within the present limits of CATHENA, as 
shown in Table 1. Examples of the structure of the sparse matrices are shown in Figures 2 and 3. 
These matrices were used to test and compare the performance of the assembled solvers on a 
stand-alone basis. What follows is a summary of the test results. 

4. TEST OF DIRECT SOLWRS 

For this test series, small interface codes were assembled using the sparse matrix solvers 
commercially available in the NAG [lo] and IMSL [l 11 libraries. Scientific Computing 
Associates Inc. (SCA), a company in New Haven, Connecticut specializing in the production of 
advanced direct, iterative and parallel sparse matrix solvers was kind enough to make their direct 
solver SMPAK available for these tests. The publicly available Y 12M and NSPIV routines were 
also tested, and the Harwell MA28 routines were included to serve as a benchmark of the current 
performance of CATHENA. 

A summary of the timing results in hundredths of a second is shown in Table 2 for all direct 
solvers and all matrices. In general, the NSPIV solver was much slower than MA28, the Y12M, 
NAG, and IMSL routines performed as well as the MA28 routines, and the SMPAK routines 
typically outperformed MA28 routines. 

The relative performance of each solver with respect to MA28 is shown in Table 3. As shown 
here, there are some surprising exceptions to the general trends. Although, the NSPIV routines 
typically do not perform well with respect to the MA28 routines, the CWIT and LASH test 
matrices were solved more than 4 times faster with the NSPIV than with the MA28 routines. The 
SMPAK routines were typically twice as fast as the MA28 routines when solving the smaller 
matrices. For the large LEPBIG matrix, SMPAK was almost 18 times as fast as MA28. On the 



& other hand, SMPAK was quite slow in solving the LASH matrix which was solved so efficiently 
by NSPIV. The NAG routines performed almost as well as the MA28 routines in all cases. The 
Y 12M and IMSL routines also typically performed as fast as the MA28 routines for smaller 
matrices, but like the SMPAK routines, their performance improved dramatically in comparison to 
the MA28 routines when solving larger matrices. 

5. TEST OF ITERATIVE SOLVERS 

As mentioned above, CATHENA generates non-symmetric, non-positive definite matrices that are 
not easily amenable to solution by iterative solvers. Two commercial packages were found with 
the capability to solve CATHENA matrices: the PCGPAK3 routines offered by the Scientific 
Computing Associates, and the MATB routines offered by Peter Sutherland at the University of 
Waterloo. Again, SCA was kind enough to offer offer their suite of iterative solvers for testing, 
and an older version of the MATB routines were located for testing. 

Although both packages offer a variety of options, the tests were performed in both cases using an 
incomplete LU preconditioner and a GMRES iteration method. This proved to be the most 
efficient and stable combination. Block solution was not used in either package, the input 
parameters were set the same for each test, and a vector filled with zeros was used as the initial 
vector for the iteration. As with the direct solvers, small interface codes were created to access the 
PCGPAK3 and MATB routines and solve the CATHENA test matrices on a stand-alone basis. 

,- 

The results for the PCGPAK3 and MATB routines are shown in Table 4. As shown here, the 
MATB routines proved to be relatively inefficient at solving CATHENA matrices. Discussion 
with the author revealed that the MATB is probably unsuited to this class of matrices. In fact, it 
was not possible to solve the U l  and CANDU9 matrices with MATB, most likely due to the 
presence of zeros located on the diagonal. Although the iteration stage of the MATB package was 
relatively efficient, most of the solution time was spent in the analysis and preconditioning stages. 

The PCGPAK3 package on the other hand proved itself to be relatively efficient in comparison to 
MA28. This is especially true in light of the fact that the original structure of the matrix provided 
by CATHENA has been optimized to run most efficiently on the MA28 routines. Thus, it was not 
possible to take advantage of structure optimization or the use of a good first guess at xo which 
would be available during a CATHENA simulation. 

It should also be noted that both the MATB and PCGPAK3 routines make use of the Basic Linear 
Algebra Subroutines (BLAS). These routines are available as standard high-level language coded 
routines, as well as machine coded routines which are optimized for a particular machine 
hardware. A short study indicates that a savings of more than 20% in the run times can be achieved 
over and above the times shown in Table 4 through the use of specially optimized BLAS routines. 



6. CONCLUSIONS 

Although the MA28 routines have been available since the early 1970s, they are still competitive 
with many of the more recently available routines. However, a significant performance 
enhancement could be obtained in CATHENA through a simple replacement of the sparse matrix 
solver, especially for large simulations. In these cases it may be possible to provide a more than 
ten-fold performance enhancement. The next step in this effort will be to implement the most 
promising solvers directly into CATHENA and make in-situ accuracy and performance tests. 
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FIGURE 1: Relative amount of time needed to generate and solve CATHENA sparse matrices as 
a hnction of the order of the matrix n. 

TABLE 1: Summary of matrices. 

Matrix 
Edwards 

RD14 
U1 
LASH 
RD12 
RD14M 
BTF 

Order I #Non-Zero 
64 1 163 

L 

IRF 
CANDU 9 
LEPSMALL 
LEPBIG 

% Sparsity 
4.0 

1654 
2272 
2292 
2390 
3168 
3373 
3846 
4241 
7941 

17733 

5701 
7750 
6248 
8199 

10741 
10762 

0.21 
0.15 
0.12 
0.14 
0.11 
0.095 

12641 
17503 
27456 
80836 

0.085 
0.097 
0.044 
0.026 





TABLE 2: Solution times for direct solvers (absolute, hundredths of seconds) 

Test MA28 SMPAK Y12M NAG NSPIV 
Edwards 2 1 2 2 1 
7-SISTERS 29 7 27 27 50 
CWIT 45 19 48 5 1 11 

LASH 86 49 1 79 99 18 
RD12 132 57 117 165 6176 

IMSL 

I 

IRF 410 294 192 452 1438. 315 
CANDU 9 1111 465 282 1113 8 8 0 7 6  416 
LEPSMALL 882 543 381 932 127248 549 
LEPBIG 26577 1503 1245 28043 - 3012 

TABLE 3: Relative performance of direct solvers (MA28/x) 

Test 
Edwards 
7-SISTERS 
CWlTT 

MA28 
1 
1 
1 - 

RD14 
U1 
LASH 
RD12 
RDl4M 
BW 
IRF 
CANDU 9 
LEPSMALL 
LEPBIG 

SMPAK 
2.0 
4.1 
2.4 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1.1 
0.18 
2.3 
3.1 
1.1 
1.4 
2.4 
1.6 
17.7 

Y12M I NAG NSPIV 
2.0 
0.58 
4.1 ---. 

1 .O 
1.1 
0.94 

IMSL 
2.0 
1 .O 
1 .O 

1.0 
1.1 
0.88 

1.9 
1.1 
1.1 
1.6 
1 .O 
2.1 
3.9 
2.3 
21.3 

0.042 
0.036 
4.8 
0.042 
0.051 
1.1 
0.29 
0.013 
0.0069 

- 

0.86 
0.85 
0.87 
0.80 
0.76 
0.83 
0.91 
1.0 
0.95 
0.95 

1.0 
1.1 
1 .O 
1.0 
1.1 
0.93 
1.3 
2.7 
1.6 
8.8 



TABLE 4: Solution times for iterative solvers (hundredths of seconds), and performance of routines 
relative to MA28. [n]=# of iterations. 

Test 
Edwards 
7-SISTERS 
CWIT 
RD14 

LASH 
RD12 
RD14M 

C 

BTF 
IRF 
CANDU 9 
LEPSMALL 
LEPBIG 

MA28 
2 

29 
45 
91 

1 

86 507 [4] 

132 
410 

1111 
882 

26577 

PCGPAK3 

5 [3] 
50 [5] 
71 [3] 

122 [5] 

520 [13] 
400 [I] 
450[1] 

132 
259 

204 [5] 
316151 
279 [3] 
773191 
701 [8] 

1102 191 
2414 r81 

MATB 
320 133 
320 [I] 

970 [85] 
370 [I] 

0.17 
0.65 
0.82 

0.17 
0.33 
0.58 

I 

630 [9] 
520[2] 
- 

1050 [5] 
2650 rsi 

MA28/PCGPAK3 
0.40 
0.58 
0.63 
0.75 

MA28/MATB 1 
0.0063 
0.09 1 
0.046 
0.25 

I 

0.47 
0.53 
1.6 
0.80 
11.0 

0.21 
0.79 

- 
0.84 
10.0 


