
PRELIMINARY INVESTIGATION OF THE SOLUTION
OF SPARSE MATRICES IN CATHENA . , . .

T.G. Beuthe and J.B. Hedley

Atomic Energy of Canada Limited
Whiteshell Laboratories

Safety Thermalhydraulics Branch
Pinawa, Manitoba
Canada ROE 1 LO

ABSTRACT

CATHENA presently uses the Hanuell MA28 routines to solve the sparse matrices generated by
the thennalhydraulics section ofthe code. The objective of this paper is to present a short
overview of commonly used sparse matrix solution techniques, and eramine the potential benefits
of using other solvers in CATHENA. A number of direct and iterative solvers have been tested on
a stand-alone basis. Their perfiomnce was compared by solving CATHENA-generated
non-positive definite, non-symmetric matrices taken from a variety of different simulations. The
results of this preliminary investigation tend to indicate that some solvers may have advantages
over the MA28 routines which could signifiantly enhance the peflonnance of CATHENA.

1 INTRODUCTION

The solution of systems of linear equations is one of the most important areas of numerical
mathematics. A large number of different descriptions of physical problems can be reduced to a
linear system of the form:

Ax = b

where x represents a vector of variables to be solved for, A represents the matrix of coefficients of
the linear system, and b represents a vector of constants.

The matrix A is often sparsely populated (less than 10% of the positions are occupied, often
significantly less) and the problem can involve the simultaneous solution of a system involving
millions of equations. Problems of such magnitude can seriously challenge the computational
capabilities of a given computer. They can only be solved using numerical algorithms that take
sparseness and structure into account, and use special storage and programming techniques.

Matrices to be solved may have real or complex elements, may be symmetric or unsymmetric (for
real matrices) or Hermitian or non-Hermitian (for complex matrices). They may be positive
definite, banded, have a block structure, or be diagonally dominant. Depending on which of these
characteristics a given matrix displays, special algorithms have been developed to solve the

system of equations with the required accuracy. These algorithms save storage and computation
time. Since research problems are typically working to the limit of available computational
resources, exploitation of matrix sparseness can make the difference between solving and not
solving a given problem.

2. SOLUTION METHODS

2.1 Direct Methods

Direct methods yield the required solution with fixed number of arithmetic operations. At the
heart of every direct method lies the Gaussian elimination process and the related triangular
decomposition. Variants of the basic direct method differ primarily in the way the matrix A is
stored, the details of the elimination process, the precautions used to minimize rounding errors,
and the methods of refining solutions.

Pivoting (exchanging rows and/or columns) often helps to assure the numerical accuracy and
stability of direct methods by moving the largest elements into the diagonal. mically, attempts
are made to minimize the fill-in of new non-zero values generated as a result of the solution
process. Some routines offer a drop-tolerance to remove insignificant fill-in values and residual
refinement to improve the accuracy of the final answer. Direct methods are noted for their relative
robustness, ease of use, and ease of acquisition. Good general discussions of direct methods for
sparse matrices can be found in the books by Pissanetzky [I], Duff et al. [2] , and Zlatev [3].

Iterative Methods

Iterative methods begin with a starting vector xo , and compute a sequence of iterands xm for
m = 1,2,3 , ...

where xm +' is dependent only on xm , and starting value xo is not part of the method.

A preconditioner is often used to help speed up the convergence of the iterations. The term
derives its name from the idea that an improvement in the condition number of matrix A helps the
iteration proceed. An undesirable side effect of this process lies in the potentially large amount of
time that can be spent in the preconditioning stage.

A variety of different methods exist, some of which only work for specialized classes of matrices
or problems. Good generalized robust solvers are more difficult to find, and are often only
available on a commercial basis. They can be complicated to use, and often include a large
number of options which require the use of expert technical support.

Nonetheless, iterative methods can be advantageous for sparse matrices since far fewer
calculations are performed per iteration than are made during the solution using direct methods.

Additional advantages exist if a good approximation to x is already available to accelerate the
convergence. If the matrix has a block structure, this can also be used to help improve the
efficiency of the iterative solver. Unfortunately, if a matrix is not positive definite, convergence is
not guaranteed when iterative methods are used. Comprehensive summaries of iterative
techniques can be found in the books by Ilin [4] and Hackbusch [5], and the article by Dongma,
and van der Vorst [6].

2.3 Parallel Solvers

Parallel solvers solve different parts of the matrix simultaneously. These methods also often take
advantage of available vector processing, and typically avail themselves of methods developed for
direct and iterative solvers. Two general approaches are used to solve matrices in parallel:

1. Consider the inherent ability of the detailed coding to be performed in parallel, or by using
vector processors. For example, row and column swapping might be done in parallel, or a
section of the code might be rewritten to vectorize basic matrix operations.

2. Divide the matrix into sub-groups that can be calculated separately. Some commonly used
techniques include partitioning, matrix modification, and tearing. These methods tend to
perturb the matrix, but matrix perturbation techniques may also be used to make matrices
easier to solve.

Parallel methods represent the forefront of development work in matrix solution. As new
machines and hardware become available, more and more parallel methods are being explored. At
this point in time, parallel solvers can be as varied as the hardware they are implemented on.
Although no books have been written explicitly on parallel matrix solvers, books like those by
Schendel [7] and Evans 181 include discussions of parallel methods.

3. THE CATHENA CODE

CATHENA (Canadian Algorithm for THEnnalhydraulic Network Analysis) is a one-dimensional,
two-fluid thermalhydraulic computer code designed for the analysis of two-phase flow and heat
transfer in piping networks. The CATHENA thermalhydraulic code was developed by MCL,
Whiteshell Laboratories, primarily for the analysis of postulated accident conditions in CANDU@
reactors.

The thermalhydraulic model in CATHENA is a one-dimensional, non-equilibrium two-fluid model
consisting of six partial differential equations for mass, momentum and energy conservation -
three for each phase. A first-order finite-difference representation is used to solve the differential
equations, utilizing a semi-implicit one-step method in which the time step is not limited to the

C A N D ~ is a registered trademark of Atomic Energy of Canada Limited (AECL).

material Courant number [9]. At each time step a sparse matrix is written and is currently solved
using the Harwell MA28 sparse matrix solver which was developed in the early 1970s.

When relatively small simulations are performed, and the order of the matrix to be solved n is less
than 4000, less than 25% of the total simulation time is usually spent in the sparse solver. In
general, the computational effort needed to assemble the CATHENA sparse matrix scales as
0 {n} . In contrast, the effort needed to solve the sparse matrix is less than 0{n2) but still far from
linear with n however, depending on the efficiency of the solver, and the sparsity and structure of
the matrix [Z]. As a result, the fraction of the total time spent solving the generated sparse
matrices increases as the size of the simulation increases. As shown in Figure 1, as the order of
the matrix increases to greater than 17,000 more than 90% of the simulation can be spent in
solving the sparse matrices, and the efficiency of the sparse solver can become the predominant
factor affecting the computational efficiency of CATHENA.

Although the CATHENA sparse matrices are non-symmetric, non-positive definite, and relatively
stiff and intractable to solution, the MA28 routines have proven themselves~robust and reliable for
more than 10 years. In the interim however, a number of potentially more efficient solvers have
become available. In this study, 7 such solvers were obtained from public and commercial
sources. A variety of different test matrices were generated by CATHENA. The size of the test
matrices was varied from small to the largest possible within the present limits of CATHENA, as
shown in Table 1. Examples of the structure of the sparse matrices are shown in Figures 2 and 3.
These matrices were used to test and compare the performance of the assembled solvers on a
stand-alone basis. What follows is a summary of the test results.

4. TEST OF DIRECT SOLWRS

For this test series, small interface codes were assembled using the sparse matrix solvers
commercially available in the NAG [lo] and IMSL [l 11 libraries. Scientific Computing
Associates Inc. (SCA), a company in New Haven, Connecticut specializing in the production of
advanced direct, iterative and parallel sparse matrix solvers was kind enough to make their direct
solver SMPAK available for these tests. The publicly available Y 12M and NSPIV routines were
also tested, and the Harwell MA28 routines were included to serve as a benchmark of the current
performance of CATHENA.

A summary of the timing results in hundredths of a second is shown in Table 2 for all direct
solvers and all matrices. In general, the NSPIV solver was much slower than MA28, the Y12M,
NAG, and IMSL routines performed as well as the MA28 routines, and the SMPAK routines
typically outperformed MA28 routines.

The relative performance of each solver with respect to MA28 is shown in Table 3. As shown
here, there are some surprising exceptions to the general trends. Although, the NSPIV routines
typically do not perform well with respect to the MA28 routines, the CWIT and LASH test
matrices were solved more than 4 times faster with the NSPIV than with the MA28 routines. The
SMPAK routines were typically twice as fast as the MA28 routines when solving the smaller
matrices. For the large LEPBIG matrix, SMPAK was almost 18 times as fast as MA28. On the

& other hand, SMPAK was quite slow in solving the LASH matrix which was solved so efficiently
by NSPIV. The NAG routines performed almost as well as the MA28 routines in all cases. The
Y 12M and IMSL routines also typically performed as fast as the MA28 routines for smaller
matrices, but like the SMPAK routines, their performance improved dramatically in comparison to
the MA28 routines when solving larger matrices.

5. TEST OF ITERATIVE SOLVERS

As mentioned above, CATHENA generates non-symmetric, non-positive definite matrices that are
not easily amenable to solution by iterative solvers. Two commercial packages were found with
the capability to solve CATHENA matrices: the PCGPAK3 routines offered by the Scientific
Computing Associates, and the MATB routines offered by Peter Sutherland at the University of
Waterloo. Again, SCA was kind enough to offer offer their suite of iterative solvers for testing,
and an older version of the MATB routines were located for testing.

Although both packages offer a variety of options, the tests were performed in both cases using an
incomplete LU preconditioner and a GMRES iteration method. This proved to be the most
efficient and stable combination. Block solution was not used in either package, the input
parameters were set the same for each test, and a vector filled with zeros was used as the initial
vector for the iteration. As with the direct solvers, small interface codes were created to access the
PCGPAK3 and MATB routines and solve the CATHENA test matrices on a stand-alone basis.

,-

The results for the PCGPAK3 and MATB routines are shown in Table 4. As shown here, the
MATB routines proved to be relatively inefficient at solving CATHENA matrices. Discussion
with the author revealed that the MATB is probably unsuited to this class of matrices. In fact, it
was not possible to solve the U l and CANDU9 matrices with MATB, most likely due to the
presence of zeros located on the diagonal. Although the iteration stage of the MATB package was
relatively efficient, most of the solution time was spent in the analysis and preconditioning stages.

The PCGPAK3 package on the other hand proved itself to be relatively efficient in comparison to
MA28. This is especially true in light of the fact that the original structure of the matrix provided
by CATHENA has been optimized to run most efficiently on the MA28 routines. Thus, it was not
possible to take advantage of structure optimization or the use of a good first guess at xo which
would be available during a CATHENA simulation.

It should also be noted that both the MATB and PCGPAK3 routines make use of the Basic Linear
Algebra Subroutines (BLAS). These routines are available as standard high-level language coded
routines, as well as machine coded routines which are optimized for a particular machine
hardware. A short study indicates that a savings of more than 20% in the run times can be achieved
over and above the times shown in Table 4 through the use of specially optimized BLAS routines.

6. CONCLUSIONS

Although the MA28 routines have been available since the early 1970s, they are still competitive
with many of the more recently available routines. However, a significant performance
enhancement could be obtained in CATHENA through a simple replacement of the sparse matrix
solver, especially for large simulations. In these cases it may be possible to provide a more than
ten-fold performance enhancement. The next step in this effort will be to implement the most
promising solvers directly into CATHENA and make in-situ accuracy and performance tests.

7. ACKNOWLEDGEMENTS

The authors gratefully acknowledge the help and cooperation of Frank Stanchell, Applied
Geosciences Branch, AECUWL, and the financial support of the AECL Centre for Mathematical
Sciences in the early part of this study.

REFERENCES

1. S. Pissanetzky, Sparse Matrix Technology, Academic Press, London, 1984.

2. I.S. Duff, A.M. Erisman, and J.K. Reid, Direct Methods for Sparse Matrices, Oxford
University Press, New York, 1986.

3. Z. Zlatev, Computational Methods for General Sparse Matrices, Kluwer Academic, Boston,
1991.

4. V.P. Ilin, Iterative Incomplete Factorization Methods, World Scientific Pub. Co., River Edge,
NJ, 1992.

5. W. Hackbusch, Iterative Solution of Large Sparse Systems of Equations, Springer-Verlag,
New York, 1994.

6. J.J. Dongarra, and H.A. van der Vorst, Supercomputer, v. 9, n. 5(1992) 17-30.

7. U. Schendel, Sparse Matrices: Numerical Aspects with Applications for Scientists and
Engineers, Halsted Press, John Wiley & Sons, New York, 1989.

8. D.J. Evans, Sparsity and Its Applications, University Press, New York, 1985.

9. B .N. Hanna, "CATHENA: A Thermalhydraulic Code for CANDU Analysis", Nuclear
Engmeering and Design (accepted for publication), 1 997.

10. NAG Fortran Library Manual, NAG Inc., Downers Grove, IL, USA, 1993.

1 1. IMSL User's Manual, FORTRAN Subroutines for Mathematical Applications, IMSL Inc.,
Houston TX, USA, 1990.

0
8000 I0000 12000 14000 16000 18000

Order of Matrix n

I I I I

- Generate Matrix - -_-____--------- -
Solve Matrix ---- 0--

,.OO

- / 0 0 .
/--

-
0

0 ./ - /-----(0 /

/

-
/ - /

/
/

/

-
/

/ - /

/
/

-
/
/

4' - -

- -
- -
- -
* I I

FIGURE 1: Relative amount of time needed to generate and solve CATHENA sparse matrices as
a hnction of the order of the matrix n.

TABLE 1: Summary of matrices.

Matrix
Edwards

RD14
U1
LASH
RD12
RD14M
BTF

Order I #Non-Zero
64 1 163

L

IRF
CANDU 9
LEPSMALL
LEPBIG

% Sparsity
4.0

1654
2272
2292
2390
3168
3373
3846
4241
7941

17733

5701
7750
6248
8199

10741
10762

0.21
0.15
0.12
0.14
0.11
0.095

12641
17503
27456
80836

0.085
0.097
0.044
0.026

TABLE 2: Solution times for direct solvers (absolute, hundredths of seconds)

Test MA28 SMPAK Y12M NAG NSPIV
Edwards 2 1 2 2 1
7-SISTERS 29 7 27 27 50
CWIT 45 19 48 5 1 11

LASH 86 49 1 79 99 18
RD12 132 57 117 165 6176

IMSL

I

IRF 410 294 192 452 1438. 315
CANDU 9 1111 465 282 1113 8 8 0 7 6 416
LEPSMALL 882 543 381 932 127248 549
LEPBIG 26577 1503 1245 28043 - 3012

TABLE 3: Relative performance of direct solvers (MA28/x)

Test
Edwards
7-SISTERS
CWlTT

MA28
1
1
1 -

RD14
U1
LASH
RD12
RDl4M
BW
IRF
CANDU 9
LEPSMALL
LEPBIG

SMPAK
2.0
4.1
2.4

1
1
1
1
1
1
1
1
1
1

1.1
0.18
2.3
3.1
1.1
1.4
2.4
1.6
17.7

Y12M I NAG NSPIV
2.0
0.58
4.1 ---.

1 .O
1.1
0.94

IMSL
2.0
1 .O
1 .O

1.0
1.1
0.88

1.9
1.1
1.1
1.6
1 .O
2.1
3.9
2.3
21.3

0.042
0.036
4.8
0.042
0.051
1.1
0.29
0.013
0.0069

-

0.86
0.85
0.87
0.80
0.76
0.83
0.91
1.0
0.95
0.95

1.0
1.1
1 .O
1.0
1.1
0.93
1.3
2.7
1.6
8.8

TABLE 4: Solution times for iterative solvers (hundredths of seconds), and performance of routines
relative to MA28. [n]=# of iterations.

Test
Edwards
7-SISTERS
CWIT
RD14

LASH
RD12
RD14M

C

BTF
IRF
CANDU 9
LEPSMALL
LEPBIG

MA28
2

29
45
91

1

86 507 [4]

132
410

1111
882

26577

PCGPAK3

5 [3]
50 [5]
71 [3]

122 [5]

520 [13]
400 [I]
450[1]

132
259

204 [5]
316151
279 [3]
773191
701 [8]

1102 191
2414 r81

MATB
320 133
320 [I]

970 [85]
370 [I]

0.17
0.65
0.82

0.17
0.33
0.58

I

630 [9]
520[2]
-

1050 [5]
2650 rsi

MA28/PCGPAK3
0.40
0.58
0.63
0.75

MA28/MATB 1
0.0063
0.09 1
0.046
0.25

I

0.47
0.53
1.6
0.80
11.0

0.21
0.79

-
0.84
10.0

