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ABSTRACT 

We have developed a three-step acceleration scheme for the outer-iterations of the  multigroup 
Sn equations with fission and thermal neutron upscatter. Although it has only been tested in 1-D 
slab and 3-D rectangular geometries mith linear-discontinuous and bilinear-discontinuous spatial 
differencing. respectively, previous experience suggests that it should be applicable in any geometry 
mith a.ny spatial differencing scheme for which an unconditionally efficient diffusion-synthetic accel- 
eration scheme exists. The method is derived. t.heoretically analyzed, and computationally tested. 
Our results indicate that  the scheme is unconditionally effective in terms of error reduction per 
iteration and highly efficient in terms of computational cost. 

IL" I. INTRODUCTION 

The standard ol~ter-iteration scheme used to  solve the multigroup S, equations is the  Gauss- 
Seidel scheme. In the absence of upscatter reactions (i-e. reactions in which a particle gains 
energy), the Ga.uss-Seidel method yields the exact flux solution in a single iteration. However, 
if there is upscat tering and a low probability for particle absorption or leakage, the convergence 
rate of this iterative process can become arbitrarily slow. To our knowledge, the only existing 
upscatter acceleration techniques currently in use are the group-dependent rebalance methods such 
as tha t  employed in the O N E T R A N ~  code. The effectiveness of these schemes is strongly problem 
dependent and they often fail on precisely those problems for which convergence acceleration is 
most needed. An unconditionally effective acceleration sheme is desired. 

We have developed an a.cceleration scheme for the multigroup Sn equations with both fission 
and thermal upscatter sources. We initially derived and theoretically analyzed two alternative ac- 
celeration algorithms: a two-step a.lgorit11m which was intended to accelerate the convergence rate 
of the  fission and thermal upscatter sources simultaneously, and a three-step algorithm which was 
designed to accelerate these source terms separately. Each of these alternatives could be consid- 
ered as a logical extension of two previous works: the S,v fission source acceleration technique of 

2 Morel and McGhee , and the SN thermal upscat ter source acceleration scheme that we previously 
developed3. IVe selected the  t hree-step algoril hrn for computational testing because our theoretical 
nna.lysis indicated it was slightly more effective t.han the two-step algorithm. Our theoretical and 
computational results indicate that  this scheme gives rapid convergence rates at a cost per iteration 
which is very little more than that  of the unaccelerated scheme. Although we explicitly consider 



only source calculations here, our method can also he applied in conjunction with inverse power 
iteration in eigenvalue calculations. This follows from the fact that each inverse power iteration 
requires the solution of an effective source problem. 

11. THE ACCELERATED METHOD 

In one-dimensional slab geometry, the inul tigroup transport ecloation for a mu1 tiplying media is 
given by: 

where the macroscopic differential scattering cross sect ion and angularly-dependent external source, 
Qg (x, p ) ,  have been expanded in the Legendre polynomials and standard variable notation has been 
utilized. The Gauss-Seidel iterative method is the sta.11dard technique for solving Eq. (I), and it 
can be  described as follows: 

where k is the iteration index and neutron downsca.t.ter and upscatter are separated. Note that, in 
the absence of fission and thermal upscatter, the Gauss-Seidel equations yield the exact solution 
in a single iterate. By subtracting Eq. (2) from Eq. ( I ) ,  a.n exact equation for the error in the 
Gauss-Seidel iterate is obtained: 

where 

+ (  ) = Qg(x, / l )  - (x ,  p) , (4) 

The  error associated with the  Gauss-Seidel i tera.te ( a d  hence the exact solution) can be obtained 
by solving this equation. However, this is not practical since this equation is no easier to solve than 
the exact multigroup transport equation. The ceiltra*l idea behind our accelerated method is to 
obtain an economical yet accurate estimate of the error by solving a coarse-grid approximation of 
this equation, which is added to  the flux iterate. 



%Te have performed infinite-medium Fourier a.nalyses for the Gauss-Seidel iteration operators 
corresponding to each of several materials. Our Fourier analyses are described in a subsequent 
section. If our acceleration scheme is to be effective, the coarse-grid approximation to Eq. (3) must 
be very accurate for the persistent error modes. The Fourier a.na.lysis indicated that the most poorly 

error modes are nearly constant in slmce and nearly isotropic in angle, which suggests 
that  a diffusion approximation can be used for the coa.rse-grid operator. The spectral shape of the 
fundamental eigenvector of the Gauss-Seidel iteration ma.tris for various moderator to fuel ratios 
(MFRs) indicated that unique one-group diffusion operators could be used to eliminate the error 
modes associated with the thermal upscatter and fission sources. The convergence rate of the fission 
and thermal upscatter sources will thus be accelera.tec1 illdependently using the appropriate spectral 
shape functions. We can expect that these operators will accurately estimate the persistent error 
modes. However, it is important to realize tllast a11 a.ccura.te estima-te of the persistent error modes 
is necessary but not suficient to ensure an effective acceleration scheme. Usually one must simply 
choose a coarse-grid operator based upon its accura,cy for the persistent error modes, and then 
prforrn a Fourier analysis to determine its effect upoil the non-persistent modes. 

Our three-step acceleration scheme assumes that independent error modes exist for the fission 
and thermal upscatter source terms. Thus, a coarse-grid error equation must be developed for 
each of these sources. The error equation for the thermal upscatter source term is derived by first 
subtracting Eq. (2) from the exact relation of Eq. ( I ) ,  with,oul including the fission source term. A 
one-third index will be used for the Gauss-Seidel i tera.te? rather than the unit-index incorporated 
in Eq. (2), in anticipation of a three-step accelerated algorithm. Performing this manipulation, 
an equation for the error in the Gauss-Seidel iterate t11a.t is associated with the thermal upscatter 

p source is obtained: 

where the residual thermal source, R::: 1 .  (x), is given by: 

Eq. (6) defines the error in successive Gauss-Seidel iterates with thermal upscatter and no fission 
source. The accelerated thermal upscat ter scheme t11a.t we previously developed is designed to 
increase the convergence rate of precisely these Thus, this scheme may be used directly 
t o  accelerate the convergence of the ther~nal upsca.tter source. A full derivation of this acceleration 
scheme is included in the reference and will not 11e repeated herein. We will suffice to say that we 
aproximate Eq. (6) with the coarse-grid opera.tor clefilled by the one-group diffusion equation: 



where 

and the spectral weighting function, tg(x), is defined as  the fundamental eigenvector of the Po 
Gauss-Seidel iteration matrix for an infinite mecliuln ( i  .e., no leakage term) with thermal upscatter 
and no fission source. This calculation depends oilly upon the multigroup cross-section coefficients 
and can easily be carried out using standard ma.thema.tical li hra.ry routines for each material in 
the problem. We solve Eq. (8) for a coarse-grid a.pprosima.tion to the error given by Eq. (6). The 

. . 

convergence rate of the iteration process is then a.ccelera.ted by adding this error estimate to the 
Gauss-Seidel scalar flux iterate. The flux in the ( I :  + {)t11 iterate (i.e., after the thermal upscatter 
diffusion correction) is thus given by the rela.tion: 

k+i 
where (x) is the multigroup-diffusion correctio~l ol~ta.ined from a single iterate of the one-group 
thermal upscatter acceleration scheme. 

It will be assumed that the thermal upscatter source is fully-converged by this single acceleration 
correction. We will show that this restriction ca.11 he relaxed in practical calculations when the 
scheme is wmputationally tested. Applying the assumption that the thermal upscatter source is 
fully-converged, the iterative multigroup transport ecluat ions with thermal upscatter acceleration 
are given by the relation: 

The error equation for the fission upscatter source term is derived by subtracting Eq. (10) from 
the exact relation of Eq. (1). This manipulation yielcls an equation for the error in the "thermal 
upscatter-accelerated" iterate associated with the fission source term: 



k+$ 
where the residual fission source, R j , o , g ( x ) ,  is defii~etl as: 

G 

k+l+ ( x )  - o*,~:(.)]  . ~ : : ! ( x )  = x,(x) C ~ g t ( ~ ) C , ~ , l ( ~ : i  [do,, 
gt= 1 

The coarse-grid approximation to Eq. (11) is derivetl by first approximating the transport error 
equation with a multigroup diffusion equation: 

It is next assumed that the solution of this error ec1ua.t ion is given hy the product of an undetermined 
space-dependent modulation function, E j ( x ) ,  and a. predetermined spectral shape function defined 
by the eigenvector a, ( x ) :  

cE$(x) = Ej(x)ag(x) , (14) 

where 

This spectral shape function should correspond to the spectral shape of the persistent error modes 
of Eq. (10). Our infinite medium Fourier analysis indicated that this shape function should cor- 
respond to the fundamental eigenvector of the Po Gauss- Seidel iteration matrix with the thermal 
upscatter term assumed to be fully converged. Ifre initially calculated this eigenvector for each 
region containing a fission source, but later found that our accelerated scheme was unstable for 
certain multi-material problems with this approach beca.use the moderating materials adjacent to 
the fuel generate large error components that are not present in the spectral weighting function 
used to generate the fission source coarse-grid operator. Thus, this spectral weighting function was 
calculated using a homogenized mixture of all the fuel and moderating materials present in the 
problem. Substituting from Eq. (14) into Eq. (13) aad iiltegrating over all energies (summing over 
all groups), the following coarse-grid equation is 0hta.i necl: 

where 



Note that  Eq. (16) is not a standard diffusion equation because of the term containing the gradient 
of the  shape function. This term is identically zero in homogeneous regions, but i t  is non-zero in 
inhomogeneous regions and makes Eq. (16) incompa.ti11le with most diffusion solution techniques. 
Most importantly, it is mathematically undefined a.t makerial interfaces. This term is an artifact 
of our assumption that the  spectral shape function depends only upon the material cross-sections. 
This is a reasonable assumption at  points far from 13o~1nda.ries in homogeneous regions, but it is 
non-physical a t  material interfaces because it leads t.o a. spatially discontinuous shape function. 
To deal with these difficulties, we simply drop the term containing the gradient of the spectral 
shape function. The justification for this step folloivs solely from the effectiveness of the resulting 
acceleration scheme when i t  is applied to inho~noge~~eous problems. Simplifying Eq. (16), the  final 
form of the coarse-grid fission source error equa.tio11 is obtained: 

We solve Eq. (17) for a coarse-grid approsirnation to the error given by Eq. (1 1). The convergence 
rate of the iteration process is then accelera.t.ec1 by a.dding this error estimate t o  the "thermal 
upscatter-accelerated" scalar flux iterate. The flus in the ( I ;  + 1)th iterate (i.e., after both the 
thermal upscatter and fission diffusion corrections) is thus given by the relation: 
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k+$ where E ~ , ~  (x) is the multigroup-diff usion correction 013 ta.ined from the  one-group fission error equa- 
tion. This completes one accelerated iteration. Note tha t  only the  isotropic component of the flux 
is being accelerated in our scheme. 

111. ANALYSIS 

T h e  purpose of the Fourier analysis is to ca.lcula.te the  spectral radius of the Gauss-Seidel and 
accelerated iterative operators for one-dimensional slab geometry. An infinite homogeneous medium 
is assumed. To perform the analysis, the iteration eclu ations must be  manipulated t o  relate the  flux 
errors prior t o  an iteration t o  the flux errors after am iteration. The differential operator that defines 
this relationship is called the  iteration opera.tor, and its spectral radius determines the  asymptotic 
error reduction factor for the  iteration process. The error is assumed to have a spatial dependence 
of the  form exp(iXx) for X E (-m, oo), where i = G. \\'ill1 this assumption, the  differential 
operator reduces to an algebraic matrix operator, called the Fourier matrix, that depends upon the 
Fourier mode parameter A. The dimensions of the Foourier matrix are determined by the number of 
fission neutron groups present in the cross sectioil 1ihra.r~ and the order of the Legendre expansion 
of the  cross sections, L. The eigenvalues of the Fourier matrix are the eigenvalues of the iteration 
operator that correspond t o  the spatial Fourier mocle defined by A. Standard library routines can 
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be used to compute these eigenvalues for a n y  va.hi(: of A .  \jTe define the modal spectral radius as 
the spectral radius corresponding to a specific Foiii.ier rnotle. The spectral radius of the iteration 
operator is then simply the maximum of the mocla.1 spectra.1 radii. 

The Fourier analysis was performed for infinite l~omogeneous slabs composed of varying mix- 
tures of uranium dioxide fuel and heavy water: I3e1.):llium oxicle, and light water moderators. The 
uranium was enriched to 8 atom percent in the fissile isotope V3'. A 69-group LANL neutron 
cross section library with 42 thermal upscatter groups was used in each case.4 The spectral radii 
of the Gauss-Seidel and accelerated iterative 011era.tot-s with isotropic scattering are given for each 
material in Table I. The Gauss-Seidel and three-step a.ccelera.ted methods axe denoted in this Table 
by GS and TSA, respectively. We have determil-let1 by extensive numerical evaluation that the 
modal spectral radius is a monotonically decreasing, even function of X for both iterative operators; 
therefore, the spectral radius of these operakors co~~responds to the X = 0 Fourier mode. The  modal 
spectral radii of the accelerated scheme axe sina.ller than or equal to the corresponding radii of 
the Gauss-Seidel operator in each material. This i11dica.t.e~ t11a.t our acceleration scheme effectively 
attenuates the persistent error components and error a.nlp1ifica.t ion of the less-resilient error modes 
does not occur. We analyzed the spectral radius of ea.cll inethod for the linearly anisotropic case and 
found no significant differences from the isotropic case. Conse~~uently, we elected to accelerate only 
the isotropic component of the flux in our a.ccelera.ted schemes. Referring to Table I, the moderator 
to fuel ratio of the material has a significant effect on the predicted spectral radius of the Gauss- 
Seidel method. Note that the spectral radius of the Gauss- Seidel operator is very close t o  unity for 
infinite media composed of pure fuel and for the modera.ted systems that are either near criticality 
or severely over-moderated. The spectral radii of our a.ccelera.ted operator are significantly smaller 

,p in these materials, which indicates that the computa.t,ional effort required to solve the multigroup 
transport equations in these materials will also l,e significantly reduced. 

IV, COMPUTATIONAL RESULTS 

All calculations were performed on a Cray-YAW cornputel- a.nd considered a fixed source in one- 
dimensional slab geometry. A 69-group cross sectioll l i  bra.ry with P3 scattering and 42 upscatter 
groups was used in each case.4 The spatial difFerencing of both the multigroup transport equation 
and the one-group diffusion equations was perfori~~ecl using a linear-discontinuous (LD) approxi- 
mation. A S.4 approximation with a Gauss-Legendre qua.dra.ture set was utilized for the transport 
equation. A point-wise relative scalar flux convergeilce tolerance of was used for both the inner 
(within-group) and outer (upscatter) itera.tions. The first four cases consider infinite homogeneous 
media composed of enriched uranium dioxide fuel alone and combined in various mixtures with 
heavy water, beryllium oxide, and light water inode~.a~t.ors. These calculations correspond to the 
following problem: 

spatially-constant, isotropic distributed source in  energy group 1 

reflective boundary conditions at left and right slab faces 

a ten (10) spatial cells 

slab thickness of ten (10) spectrum-avera.gec1 1nea.n free pa.ths (mfp), where such a mfp is equal 
to three times the one-group diffusion coefficiel~t defined l ~ y  Eq. (16). 



The fifth test case simulates a fuel lattice coml~osed of seven separate regions corresponding 
to the fuel pellet (U02) ,  the cladding (Stainless Steel), the moderator (DzO),  the inner and outer 

CL coolant channel walls (Stainless Steel), the coolant ( H z O ) ,  and a reflector (BeO). The specified 
problem geometry is illustrated in Figure 1. One spatial cell is utilized for each of the regions 

Figure 1: Spatial Geometry for Test Case 5 

composed of stainless steel. This calculation corresponds to the following problem: 

B e 0  uo2 

isotropic surface source in energy group 1 on right face (BeO)  

20 cells 20 cells 1 0 cells 20 cells 

reflective boundary conditions a t  left face (UO,) 

D2 0 

cell thickness of one-tenth of a spectrum-averaged mfp. 

H2O 

The spectral radius of the Gauss-Seidel and accelerated fission and thermal upscatter methods for 

r these calculations is computationally estimated as: 

where +f,, denotes the scalar flux iterate a t  step (k) for spatial cell i and energy group g, and I( 
denotes the index for the last iterate. 

The  performance of our accelerated scheme is compared with the Gauss-Seidel scheme in Ta- 
ble I. The computational spectral radii of the Gauss-Seidel method show excellent agreement with 
theory. The spectral radii of the accelerated scheme exhibit this same agreement for the cases mod- 
erated with heavy water and beryllium oxide, but the computational spectral radii for the system 
moderated with light water deviate slightly from the theoretical predictions because the first and 
second largest eigenvalues of the accelerated iteration matrix are complex conjugates for the water 
moderated system. This characteristic resulted in the computed spectral radii of the light water 
system oscillating between two distinct values, rather than  converging to a single value. The spec- 
tral radius of the unmoderated system is actually less than the theoretical prediction. The spectral 
radius of the accelerated scheme is significailtly reduced relative to the Gauss-Seidel spectral radii 
for each case considered. Thus, effective a.ccelera.tion ha. been oh t ained for these problems. , The 
accelerated scheme is much more effective than the Gauss-Seidel method for the systems composed 
of pure fuel and for the  moderated systems w i t h  either intermediate or high MFRs. For example, 
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the  Gauss-Seidel scheme requires 7798, 61S5, a.nd 5,52 iterations for the systems with intermediate 
MFRs of heavy water, beryllium oxide, and light wa.ter, respectively, but our accelerated scheme 
requires less than 15 iterations for each of these calculations. The acceleration acheived with our 
scheme for low MFRs is nominal. The Gauss-Seidel met hod is effective for these materials, however, 
so  significant acceleration is not required. We tested our accelel-ation for a multitude of MFRs and, 
in each case, effective acceleration was obtained when it was needed. 

The fifth test case is intended to demonstrate the validity of the accelerated fission and thermal 
upscat ter algorithm for problems containi ng mu1 t i ple materials. The TS.4 scheme is faster than 
t h e  standard Gauss-Seidel method by a factor of 3 for this test cases. The TSA computational 
spectral radius obtained for the multiple region pro l~ lem is less than tlre maximum of the spectral 
radii obtained in the homogeneous problems for each inaterial. Other inhomogeneous problems that 
were performed show similar behavior. T h e  spectral 1-a.clius of our accelerated scheme in multiregion 
problems appears to be bounded by the maxinlu~n of the spectral radii obtained in the  corresponding 
homogeneous infinite medium problems. Thus: it would apl3ea.r that the decision to neglect the  drift 
t e rm in the one-group diffusion equatioils is justified. 

V. CONCLUSIONS 

Our theoretical and computational results iildica.te that the three-step acceleration scheme is a 
vastly superior technique for solving the multigroup tra.nspo1.t equations with upscatter, in compar- 
ison to the standard Gauss-Seidel technique. The degree of improvement that is obtained with our 
scheme is problem dependent; a significant iinpro~~ement was obtained for intermediate and high 
MFRs, while t h e  acceleration obtained in low h@"I systems u7a.s nominal. Significant acceleration 
is not required for the low MFR cases, however, beca.use the Gauss-Seidel method is quite effective 
in these systems. 

The three-step acceleration scheme has been developed for one-dimensional slab geometry in 
this  paper, b u t  i t  appears that  the method can be easily generalized to curvilinear and multidimen- 
sional geometries. We have tested the algorithm for two-dimensional rectangular geometry using a 
bilinear-discontinuous differencing scheme for the transport and diffusion equations .5 These corn- 
putational results indicate that  our acceleration scheme is equally effective for this geometry. An 
efficient implementation of our acceleration scheme requires a.n efficient technique for solving the 
coarse-grid diffusion equation. The stability of our method was preserved in our calculations by 
maintaining consistency in the spatial differencing of the S, and diffusion equation. A consistently 
differenced diffusion equation cannot always be obta.iiled for multidimensional S, calculations with 
advanced (LD or LD-like) differencing. Furthermore, if such an equation is obtained, one may not 
be able to solve it efficiently. These considerations m a y  limit the applicability of the three-step 
method for multidimensional geometries in the irnmec1ia.te future. However, advances in multidi- 
mensional diffusion-synthetic acceleration Lechniclues are rapidly being made, and such advances 
are  directly applicable to  our scheme. 
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Tal~le I: Performance of Gauss-Seidel and TSA Alethocis 

' Iterative )laterial 
Scheme I P Required 

-02 
' 

0.9953 / 0.9954 4.27'3.3 
TSA I;O2 0.1156 0.0927 S 1S.l 
GS 

TSA 
D 2 0  c(: Cr02, 3:1 AIFR 15 33.4 
D 2 0  S: [YO2. 3:l 11FR 18.1 

GS 
TSA 
GS 

TSI\ 
GS 

TSA 
GS 

.TS A 
GS 

TSA 
GS 

TSA 
GS 

16.721.2 
15.2 

482.743.4 
16.1 
40.0 
22.6 

13,710.3 
21.S 

13,709.4 
31 -3 
53.1 
18.1 

1,191.2 
20.3 

2,510.2 
'24.7 

S10.6 
235.3 

7,79S 
8 

.)*'5.132 -- - 
1 

1s 

DO S: ;37: 1 1IFR ' 0.9988 I 0.99% 
D20 F02. :3?1 1IFR 

DzO S: 1'02. 40.000:l ILFR 
DzO k I.'O2. -10.000:l IIFR 

Be0 < !  ( X I 2 ,  3 1  11FR 

TSA 1120 ,k 1702. -I:1 AIFR 

Be0 S; VOl.  3:  1 MFR. 1 0.3122 0a4i10 1 0.3122 1 10 

GS 
TSA 
GS 

TSA 

0.2SG.1 U . 9 s 3 4 1  O.4Fl-l 1 9 

0.4053 / 0.1053 

Be0 k 1'02, S2:l 11FR 
B e 0  (C: 1'O.?. 62:l JIFR 

Be0 .I V 0 2 .  5.OOO:l LlFR 
Be0  I?, 1:O.l. 3.000:l MFR. 
li20 S; 1-02. 3:: 11FR 
0 0 .  3 :  1 
1f20 k [TO2. 4:l \1FR 

H 2 0  S: 1;02. 100:l 11FR 
f120 S: liO2. 100: 1 1IFR - 

r I1 egion - 
r Region 

0.9999 
0.45'29 

1,lGS 
11 
:j 9 
1 'i 

0.99'21 1 0.9921 
0.~1312 1 0.3G16 

0.9999 
0.4829 

0.9985 
0.5674 

X 1 .-I 
X/A 

0.4710 

0.S450 
0.4522 

0.9985 
0.5674 

6,1S5 
11 

0.99Si j 0.9986 
0.5913 0.5913 
U.(i405 i 0.6404 
0.1475 0.1472 

0.9S3-l 

6,801 
14 
24 
S 

,552 


