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ABSTRACT 

The subgroups method provides a means of obtaining a spatial structure across a lattice cell of the 
neutron cross sections at resonance energies. This feature is absent in the equivalence principle that is 
currently employed by WIMS-AECL in obtaining shielded cross sections for heterogeneous cells. In addition, 
the calculation of the shielded cross sections by the method of subgroups is independent of the spatial 
geometry of a lattice cell, provided the collision probabilities are calculable. The method is therefore intended 
to be implemented in WIMS-AECL for the resonance treatment. A mechanism of implementing the method 
of subgroups into the calculation of shielded cross sections is presented. Preliminary results of the calculated 
shielded cross sections for "Zr in pressure tubes in a CANDU@ lattice from the subgroups method and 
MCNP calculations are shown and discussed. 

1 INTRODUCTION 

There a;re two major goals of the subgroups method. The f i s t  is to achieve a more detailed 
spatial structure of the energy-group averaged, flux-weighted, cross sections, for isotopes such as 
2 3 8 ~  and 2 3 9 ~ ~ ,  when the neutron energies fall into the resonance range. These groupaveraged 
cross sections are referred to as shielded cross sections. The name has its origin in the spatial 
self-shielding and energy self-shielding effects associated with the resonance phenomenon. Isotopes 
such as 2 3 8 ~  and 2 3 9 ~ ~  axe referred to as resonance absorbers because of the sharp resonances of 
their nuclear cross sections, which are found mainly in the epithermal range. The focus of the 
current work is on accounting for the self-shielding effect due to the resolved resonances in the 
epithermal region. A second objective is to obtain an enhanced flexibility in treating various fuel 
geometries. 

A more detailed spatial structure of the shielded cross sections will lead to a more realistic 
spatial neutron-flux distribution, and a more accurate calculation of nuclear reaction rates, within 
a fuel bundle inside the core of a CANDU reactor. A geometry-independent formalism will allow 
the calculation of shielded cross sections for any fuel design to be carried out in a consistent way. 
The shielding of ' l ~ r  in the pressure tubes, for example, should receive no special treatment. 

To illustrate the need for a detailed spatial structure of the shielded cross section, consider a 
pin cell where a cylindrical UOz (natural uranium) fuel pin is surrounded by DzO moderator. Due 
to the large capture cross sections of 2 3 8 ~  at resonance energies, the mean-free-path of neutrons 
becomes rather small (z 0.1 mm at 4000 barns). As a result, resonance neutron capture takes 

CAND@ is a registered trademark of Atomic Energy of Canada Limited (AECL). 



rn place mostly on the surface of a fuel pin, which leads to localized 2 3 9 ~ ~  build-up and a rapid drop 
in neutron flux. This is known as the skin effect [I]. It also serves to demonstrate the effect of 
spatial self-shielding, as the 238 u nuclei inside the fuel pin are effectively shielded from capturing 
neutrons at resonance energies. The plutonium build-up affects the power distribution across a fuel 
pin, which in turn affects the temperature distribution across the fuel pin. A correct prediction of 
the power and temperature distributions requires an accurate calculation of the spatial variation 
of the neutron capture rate, which is determined by the shielded cross sections and the neutron 
flux. The subgroups method yields better estimates of the shielded cross sections at  a finer spatial 
scale. This leads to the subsequent improvements of the calculated neutron flux distributions and 
the calculation of local nuclear reaction rates. 

The shielded cross sections are defined by 

where Cxkg is the ma,croscopic shielded cross section for the spatial region.k, energy group g and 
reaction x*. The corresponding microscopic shielded cross section for the isotope j is denoted by 
<,kg.. The number density for the isotope j at the spatial region k is represented by ni, and it 
can always be chosen to be region-wise constant. The scalar neutron flux #I(?, E)  is a function of 
the spatial miab le  7 and energy E. The evaluation of the shielded cross sections is essentially 
determined by the evaluation of the flux-normalized resonance integrals, denoted by RI, where 

for isotope j and reaction x. 

In WIMS-AECL, the neutron group flux #kg, averaged over some spatial region k and energy 
group g, is obtained by solving the multigroup neutron transport equation [2]: 

where Pkt+k,s is the collision probability corresponding to energy group g of width AE,, fiom 
spatial region k' of volume Vkt to spatial region k of volume Vk. The fission yield for group g and 
isotope j is denoted by xi, whereas G and K are the total number of energy groups and spatial 
regions, respectively. 

To solve for the group flux 4 k g  in the resonance region, the shielded cross sections such 
as fission yields and collision probabilities for all k and g are first calculated. When the 
calculated results are taken as coefficients, Equation (3) becomes linear and can be easily solved 
for #kg. The only approximations inherent in Equation (3) are the isotropy of the emission density 
and the flat-flux-approximation (FFA) [3] with boundary conditions embedded in the collision 
probabilities. Clearly, if the solution of the group flux #kg is to be a good representation of the 
averaged neutron flux over the spatial region k and energy group g, the shielded cross sections, 
which themselves depend on the flux, must first reflect the true distribution of the neutron flux 
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in energy and space. Such characteristics of shielded cross sections are not easily obtained, due 
to the rapid change of cross sections of resonance absorbers with energy. Because of the rapid 
variation of the cross sections with energy, the neutron flux also changes rapidly with energy. In 
the case of a heterogeneous cell, the neutron flux also varies rapidly in space at the interface between 
absorbing and non-absorbing media, as the skin effect has demonstrated. Moreover, there are no 
known analytical solutions of the neutron flux when heterogeneity is present in a cell. The problem 
then becomes one of how to best describe the spatial and energy dependence of the shielded cross 
sections when the solution of the neutron flux is not known a priori. 

2 THE CURRENT RESONANCE TREATMENT IN WIMS-AECL 

Currently in WIMS-AECL, the calculations of shielded cross sections are based on the following 
principles: 

In the case of a homogeneous cell (4, 51, the spatial variation of the flux is ignored. For 
an infinite homogeneous medium, it is possible to derive analytical solutions of the neutron flux 
as a function of energy under various approximations. Such solutions are taken as approximate 
weighting fluxes and are used to evaluate the RI. The weighting flux is usually parametrized by a 
dilution parameter 00, which is the total background scattering cross section per absorber atom. 
The resonance integral is then evaluated as a function of the dilution parameter for each absorbing 
isotope, and the results are stored in a nuclear data library. 

When heterogeneity is present in a cell, as it is in all nuclear-power reactors, an equivalence 
principle is employed [6]. In cases where the cell geometry is simple, it can be shown [7] that if 
00 is replaced by an eflectzve background scattering cross section Co, the resonance integral for 
a heterogeneous cell is formally identical to that of the homogeneous case. Therefore, instead of 
evaluating the resonance integral for the heterogeneous cell directly, one needs only to compute the 
effective background scattering cross section Go associated with the heterogeneous cell, and look 
up the corresponding value of the resonance integral previously stored for a particular absorber 
evaluated for a simple homogeneous cell. 

There axe two weaknesses associated with the equivalence principle when considering het- 
erogeneous cells. First, the formalism derived from the equivalence principle depends on the fuel 
geometry in a cell. Therefore, one needs to derive a different equivalence relation with which to 
treat each different cell geometry, which makes the application of the equivalence principle inflexible. 
h t  hermore, the effective background scattering cross sect ion is derivable for simple geometries 
only. WIMS-AECL has, until recently, supported only a limited set of cell geometries. Secondly, 
the shielded cross sections calculated by WIMS-AECL have a rather coarse spatial structure. For 
example, in the case of a pin cell, the shielded cross section of a resonance group for the entire fuel 
region takes only one value. In other words, the shielded cross section so calculated is flat over the 
fuel region. Consequently, the spatial distribution of neutron flux calculated from these shielded 
cross sections has a limited spatial structure. 

3 THE BASIC IDEA OF THE SUBGROUPS METHOD 

The concept of subgroups was first introduced by Nikolaev almost thirty years ago in his 
study of the structure of resonance cross sections [8, 91. Several applications based on his idea have 
been developed (5, 10, 11, 12, 131. Our approach follows closely Nikolaev's original idea and has 
much in common with other implementations. Nevertheless, the means by which the subgroups 



rn flux is calculated in this work is new. 

The basic idea of the subgroups method is to divide neutrons that in one particular broad 
energy group (in the resonance energy range) into smaller subgroups. The partition into subgroups 
is not carried out according to the energy of the neutrons; rather, the partition is made according 
to the total cross section at which the neutrons interact with a resonance absorber. 

Figure 1 illustrates the subgroups concept. For a resonance absorber r in a resonance energy 
group g, the total cross section a [ ( E )  spans a range from oI,'?ln to ~ ~ ' ~ ~ ~ t  t,g . This range of total 
cross section is divided into I subsets, each of which is referred to as a subgroup. The I subgroups 

T O  r l  ~ , i  $2 
are bounded by a monotonically increasing sequence of points, cr,:,, o,,;, ..., o,,~, ..., ,,, , where 

and 

r 2-1 Cross sections belonging to the range Aoljgi = 0:;; - o,,'~ are said to be in the subgroup i. 
In the subgroups method, each subgroup i of cross sections is characterized by a single value, 
called the subgroup cross section for the subgroup i. 

,P 
A subgroup i of neutrons within the energy group g, a t  some absorbing spatial region k, is 

defined to be the collection of neutrons of energies whose corresponding total cross sections belong 
to the subgroup i .  This collection of neutrons constitutes the subgroup flux. When the set of 
cross sections corresponding to the subgroup i is characterized by the single subgroup cross section 

4, si we define the subgroup flux (a density in energy), denoted by $kgi, to be the conventional 
neutron-flux density associated with this subgroup cross section otjgi. Thus, 

Note that corresponding to each subgroup i of width AO:,~~, there may be multiple subintervals 
AEZ in energy where rn = 1,2, ..., as Figure 1 shows. 

By introducing the concept of subgroups, the resonance integral can be replaced by a weighted 
sum of cross sections, thereby reducing the computational effort in evaluating the resonance integral 
associated with heterogeneous cells. At the same time, the method yields the desired spatial 
variation of the shielded cross sections. The evaluation of the resonance integral reduces to finding 
three quantities: the subgroup cross section, the subgroup flux and the subgroup weight, which 
is denoted by Ggi. AS the following sections show, the subgroup weight is simply the sum of the 
energy intervals corresponding to the subgroup i within the broad energy group g .  

e tWhen refemng to the boundary points of subgroups or subgroup quantities, namely the subgroup cross sections, 
the subgroup fluxes and the subgroup weights, the subscript g only denotes the energy group to which these quantities 
belong, and does not imply energy-group averaging. 



4 THE SUBGROUP FLUX 

It is assumed in this work that the neutron source density, denotedby Skt (E), averaged over 
some spatial region k', varies with energy E slowly enough within an energy group g of width AE, 
such that it can be replaced by an energy-group averaged value, Sgtg. The neutron source density 
and its group-averaged value can take the following forms: 

&I (E) = dm d ~ '  {x X' ( E )  ( r ~ ( , k t  (E'))' + x s , k ~  (E' -+ E )  +kt (E') , and 
j 1 (7 )  

Sp ( E )  d E  . (8) 

It can be shown [14], from the integral-transport equation for the scalar neutron flux, that this 
assumption leads to 

where k' = 1,2, .. ., K. If it is further assumed that the energy behaviour of Ct,k ( E )  is dominated 
by that of a single resonance absorber, r ,  within the energy group g, Equation (9) simplifies to 

,)L 
Making use of the definition of the subgroup flux and ignoring the tildes for notational simplicity, 
we arrive at a means of calculating the subgroup flux 4kgi given by 

The macroscopic subgroup cross section CtYtgi in Equation (11) is related to its microscopic coun- 
terpaxt by 

where the energy-group averaged microscopic cross section for each isotope j # r ,  within the energy 
group g, is denoted by d;;. The cross sections 4;; can be calculated, for various isotopes, using 
NJOY by assuming an approximate flux shape in each energy region. In the calculation of collision 
probabilities Pkt+k,i, the macroscopic cross sections are taken to be energy-group averaged values 
for the non-absorbing spatial regions, and macroscopic subgroup cross sections for the absorbing 
spatial regions. 

The discussion thus far in this section not only gives rise to a means of calculating the 
subgroup flux, it also reveals a situation that justifies the assumption at the heart of this neutron- 
subgroups method. Namely, in the resonance region, the energy behaviour of the neutron-flux 
density, averaged over some spatial region k, is dominated by that of the total cross section of some 
resonance absorber. 

p Equation (11) shows that the subgroup flux, 4k,, can be obtained through the collision 
probability calculations. Since the collision probability Pv-tk,i is dependent on the spatial region 



of interest, k, the subgroup flux +ksi calculated f?om Equation (11) carries the signature of the 
spatial distribution of the neutron flu at energies at  which the total cross section is Ctjkgi for a 
given lattice cell. This introduces the desired spatial dependence into the shielded cross sections. 

A set of computer programs called SFLUX was written to perform the subgroup flux calcula- 
tions. The cross sections needed in calculating the source term Sir,, are taken as unshielded. 

5 THE LEBESGUE INTEGRATION SCHEME 
AND SHIELDED CROSS SECTIONS 

The concept of subgroups simplifies the evaluation of the resonance integral by allowing it 
to be carried out in the Lebesgue integration scheme. A brief explanation of this scheme is given 
below. 

Suppose we have some function, f k  (o:(E)), that varies rapidly with E over a range of energy, 
AE,. The function itself varies between fpn and fra. Evaluating the integral in the usual 
Riemann scheme, we have 

where fk,E is a representative value of f k  (o;(E)) in the subinterval, AEi. If the width of the peak 
is less than or comparable to AEi, the numerical evaluation of the integral, which is always a finite 

? sum, can be far from the true integral, unless special measures are employed, which usually are 
t ime-consuming. 

In the Lebesgue integration scheme [15], a partition on the integrand between fkmin and frax 
is carried out, as shown in Figure 2. Evaluated in the Lebesgue sense, we have 

where f k,i is a characteristic value of the function fk  within the interval Afi, and Mi is the corre- 
sponding Lebesgue measure for the interval Afi, and is simply the sum of the energy subintenmls 
within which the corresponding values of the function fk belong to the interval A fi. For large and 
narrow peaks, the Lebesgue integration scheme naturally divides the peaks into pieces and leads 
to a better representation of the true integral when using finite sums. The advantage of using the 
Lebesgue integration scheme when evaluating the resonance integral thus becomes intuitive. 

Employing the approximation that the neutron flux is a function of the total microscopic 
cross section of a resonance absorber, the numerator of the resonance integral for absorber T and 
reaction x=t can be written as 

where fk (at (E)) = O; (E)+k (0; (E)) is a function of the total cross section. Recognizing that 

P' f k  (o;(E)) is a single-valued function of o[ (E) within the energy group g, instead of partitioning 
strictly the integrand f k ,  one can partition the cross section a{(E),  of which fk is a function. For 



each resulting subgroup cross section a[,gi, there corresponds a uniquely defined value in f k ,  which 
we denote by fkgi and 

f k g i  = o;,gi +kgi 

where 4)igi is calculated by Equation (11). Bear in mind that o; (E) is a single-valued function of 
E. It is then seen that the sum of subintervals in energy corresponding to a subgroup  ACT^:,^ is the 
Lebesgue measure of the subgroup i, which we denote by AEgi. 

Carried out in the Lebesgue sense, the integral of Equation (15) becomes an infinite sum of 
the elementary areas fkgiA Egi. Thus, 

Conforming to the nomenclature of the subgroups method, AEgi is also termed the subgroup weight 
denoted by Ggi. With the normalization constraint xi wgi = 1, the subgroup weight wgi becomes 

Clearly, as long as the boundary points of the subgroups are known, the subgroup weights wgi can 
be evaluated from the point-wise cross-section data. 

The motive for partitioning o[(E) between o:,':~* and o:,':~ for a given energy group g is 
two-fold. First, @(E) is a rapidly varying function of E within the resonance region. Based on the 
merits of the Lebesgue integration scheme, it is more efficient to partition 4 (E) than to partition 
E. Second, the shape of o[(E) as a function of E is only a property of the isotope. Therefore, 
it is possible to derive, in advance, the subgroup cross sections and the subgroup weights without 
knowing the geometry of the lattice cell, and store the results. On the other hand, fk (ol(E)) must 
be calculated for every o[(E)  and for every specific geometry, which makes an a priori determination 
of the subgroup constants via fk rather limited. 

For details on a method to evaluate subgroup cross sections and subgroup weights, see the 
companion paper [16] published in these proceedings. 

Once all three subgroup quantities (namely, the subgroup cross section, the subgroup flux 
and the subgroup weight) are calculated, the shielded cross sections take the form 

which shows that they are simply weighted sums of cross sections. A computer program called SRXS 

was written to perform calculations of the shielded cross sections using the subgroups method. 

The advantages of the subgroups method are summarized below: 

It gives rise to the spatial structure of the shielded cross sections that is absent in the equiv- 
alence principle-based models. 

The formalism is independent of the geometry of the lattice cell, which means that it can be 
applied to any fuel design provided the collision probabilities are calculable. 



The subgroup constants can be prepared in advance, once only, for all resonance isotopes 
with a predetermined number of subgroups. 

6 PRELIMINARY RESULTS AND DISCUSSIONS 

Self-shielding calculations were performed for the g = 31 energy group in the WIMS-AECL 
ENDFIB-based libraries, for Zr in a CANDU-reactor pressure tube. This energy group is bounded 
by 275.36 eV and 454 eV. In this energy range, ' ' ~ r  displays two resonances (see Figure 1 of 
Reference 16). 

The problem geometry was of the simple annular type. The pressure tube was subdivided 
into ten cylindrical regions where the increment in radius between the adjacent cylindrical surfaces 
is 0.45 cm. To simplify the problem, it was assumed that the space inside and outside the pressure 
tube contains heavy water. The number of subgroups in this case was set to be I = 4. Calculations 
were carried out using SRXS and MCNP on the shielded total and shielded absorption cross sections. 
Results are shown in Figures 3 and 4. 

The figures show the calculated shielded cross sections from the inner radius (5.17 cm) of the 
pressure tube to its outer radius (5.62 cm) . The subgroups method gives the correct feature of the 
spatial variation of the shielded cross sections; its results and those from the MCNP calculations 
reveal the same trend. The unshielded cross sections are also displayed to illustrate the magitude 
of the self-shielding effect. 

Discrepancies between the S R X ~  and the MCNP calculations are to be expected. Source of 
discrepancies built into SRXS include: the approximation of constant source density per unit energy; 
the discontinuous multigroup nature of SRXS; and the assumption of isotropic scattering, all of which 
are not assumed in the Monte Carlo (MCNP) calculations. In addition, the number of subgroups 
and the constraints placed in obtaining the subgroup parameters could have an impact on the 
calculated values of the shielded cross sections. The magnitude of the error introduced by these 
approximat ions is not easy to quant lfy without extensive investigations. A planned immediate 
investigation is to use a constant source density per unit lethargy instead of that per unit energy 
employed in the present work as indicated in Equation (8). It is known that the source density per 
unit lethargy in the slowing-down range, in the case of an infinite, non-absorbing, homogeneous 
medium with slowly-varying scattering cross sections, can be approximated well as constant over 
an energy group (such as the g = 31 group). Thus, a constant source density per unit lethargy is 
likely a less severe approximation than a constant source density per unit energy. 

The ratio of shielded to unshielded cross sections serves as a measure of the impact on the 
neutron balance in a nuclear reactor from resonance self-shielding. Consider the ratio of the shielded 
microscopic cross sections derived from MCNP to the unshielded cross sections, and the same ratio 
evaluated with SRXS instead of MCNP. The volume-weighted average of the difference between these 
two ratios is about 0.07 for the absorption cross section and 0.13 for the total cross section. These 
results are considered to be good. Nevertheless, discrepancies between the MCNP calculations and 
the SRXS calculations exist and remain to be explained. It is known, however, that errors introduced 
by an underprediction of shielded cross sections are generally compensated by an overprediction 
of the neutron-flux densities and vice versa [7]. Thus, we expect superior agreement with MCNP 

calculations when the reaction rate, which is proportional to the product of the shielded cross 
section and the corresponding neutron-flux density, is to be evaluated. Also noteworthy is that 
because the effect on the overall neutron balance from neutron absorption is primary, while that 
from neutron scattering is secondary, the level of agreement of the calculated shielded absorption 



cross sections is of greater importance than that of the shielded total cross sections. 

The calculation of the shielded cross sections for "Zr is not available from WIMS-AECL for 
comparison, since WIMS-AECL currently only shields fuel materials, and the problem geometry used 
here cannot be handled directly by the self-shielding methods of WIMS-AECL as they now stand. 
Calculations of the shielded cross sections of 2 3 8 ~  are ongoing for comparisons between WIMS-AECL, 

SRXS and MCNP results. 
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Figure 1: An illustration of a subgroup AO;,~~ of cross sections and its corresponding subgroup 
weight wgi = A E ~ ~ + A E ~ ~ .  

Figure 2: An illustration of the Riemann and Lebesgue integration schemes. 
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Figure 3: Shielded total cross sections of 91 ~r for energy group g = 31. 
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Figure 4: Shielded absorption cross sections of ' l ~ r  for energy group g = 31. 


