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Mathematical modelling of the heat transfer and fluid flow in nuclear fuel channels is integral to 
ensuring the safe operation and design of nuclear reactors. Since analytical solutions to the 
governing equations are not generally available, computational methods are used to provide 
numerical solutions to the equations. Further, because of the complex geometry of the fuel 
bundles and the appendages, detailed grid-independent numerical solutions of the fluid flow and 
heat transfer within each fuel bundle are not feasible on a routine basis. 

An alternative to solving for the detailed description of the fluid flow and heat transfer is to 
average over larger control volumes and use constitutive relations to supply the information that 
was lost in the averaging process. This is the basis of subchannel codes. Figure 1 shows the 
subchannels for a 37-element CANDU fuel bundle. A subchannel is defined as the flow region 
bounded by the fuel rods and imaginary lines joining the fuel rod centroids. Control volumes are 
created by dividing each subchannel axially along the length of the bundle. 

ASSERT-PV [l] (Advanced Solution of Subchannel Equations in Reactor Thermalhydraulics, 
Pressure-Velocity) is a subchannel code that is used widely in the Canadian nuclear industry. It is 
a transient, quasi-two-fluid computer code developed to predict the heat transfer and fluid flow in 
CANDU fuel bundles. ASSERT-PV solves the conservation equations for mass, momentum, and 
energy for the single or multi-phase mixture, as well as separate energy equations for the vapour 
and liquid phases. The elliptic form of the governing equations is used to allow for prediction of 
low and recirculating flows. The code has been used for a range of applications including forming 
the basis for the development of coolant mixing models [2] for safety analysis production codes 
such as FACTAR [3], assessing the impact of a channel flow blockage [4], as well for a range of 
critical heat flux assessments [5] [6]. 

As discussed above, since subchannel codes employ relatively large control volumes, the 
fine-grained details of the fluid flow and heat transfer are not resolved and constitutive 
relationships are required. In the solution of the momentum equations, for example, constitutive 
relationships are used to model the frictional losses due to the presence of walls, while bundle 
appendages such as endplates, spacers, and bearing pads are modelled by applying local k-factors. 
Solution of the thermal energy equation requires expressions for the heat transfer from the wall 
and between phases as well as an expression for the thermal mixing due to fluid turbulence. 

The mathematical modelling of the turbulent transport of energy is the focus of this paper. The 
motivation for the work is to determine the validity of the available correlations for the case 
where steam is the working fluid. This is assessed through a survey of the literature for 
experimental data and mathematical models pertaining to turbulent thermal mixing, and by 
comparing predictions from the correlations to data obtained from water and air experiments. 

1Please address all correspondence to M.F. Lightstone. 



Figure 1: Subchannel Layout for a CANDU 37-Element Fuel Bundle 

2. MODELLING OF TURBULENT TRANSPORT OF ENERGY 

In a turbulent flow, the fluid velocities and enthalpies (for non-isothermal flows) become irregular 
and unpredictable. Such flows are usually modelled by decomposing the quantity of interest into a 
time-averaged plus a fluctuating component, i.e., for the instantaneous velocity, v, and enthalpy, 
h: 

v = + v' and = + h' (1) 

where the time-averaged or mean values of the velocity and enthalpy, respectively, 
and and are the fluctuating components. By substituting these equations into the energy 
equation and time-averaging each term in the equation, an additional term representing turbulent 
transport will arise. This term, which involves a correlation between h' and v', must be modelled. 

A standard approach used to model the transport due to turbulence is the gradient diffusion 
method: 

(2) 

where is the heat transfer per unit area due to turbulent motion, pis the fluid density, is the 
turbulent diffusivity, and represents the coordinate direction joining two adjacent subchannels i 
and The enthalpy gradient can be written as: 

(3) 

where is the distance over which mixing occurs, and and are the time-averaged enthalpies 
in subchannels i and respectively. Note that for convenience the over bar has been dropped. The 
total energy transport due to turbulent fluctuations is obtained by multiplying Equation (2) by 
the heat transfer area, A, between two adjacent subchannels. The heat transfer area is calculated 



from A= Le, where Lis the length of a control volume and c is the width of the gap, yielding: 

h·-h· = = - (4) 

The turbulent mixing rate, is introduced by rewriting Equation (4) 

(5) 

where: 
I 

W·· =pc- (6) 

The quantity is defined as an effective mass fl.ow (per unit control volume length) due to the 

turbulence. Correlations are used to provide values for 

3. CORRELATIONS FOR 

The turbulent mixing rate, depends on both the geometry of the subchannel pair and the 
Reynolds number of the fl.ow. Hence, the convention is to write Equation (6) in the following form: 

(7) 

where: 
d/ = = a function of the subchannel geometry only 

= a function of Reynolds number only 

In this paper a number of correlations for are presented. These are the correlations of Rogers 
and co-workers [7] [8], Petrunik [9], and the more recent correlation of Rehme [10]. These 
correlations assume the same or very similar Reynolds number dependence, with the major 
difference in the correlations being in the component of Equation (7). The general formulation 
for the Reynolds number dependence and correlations for are presented in separate sections 
below. 

3.1 Reynolds Number Formulation 

The dependence of the mixing rate on the Reynolds number is found by considering classical flows 
such as those in open channels and smooth pipes. For fully developed turbulent open channel 
flows and for flows in the central portion of a circular tube, the turbulent diffusivity can be 
expressed as: 

D 

where is the friction velocity, and D is the hydraulic diameter of the channel or pipe. The 
Reynolds number dependence is introduced via the friction velocity, which is defined as: 

where is the wall shear stress: 

* = 
p 

1 = -pfU2 

2 

(8) 

(9) 

(10) 



and and are the average axial fluid velocity and the Fanning friction factor, respectively. For 
fully developed flow in smooth tubes, f is found from: 

(11) 

where = 0.046 and = 0.2 [11]. Substituting Equations (9) to (11) into Equation (8) yields: 

(12) 

In order to relate the turbulent diffusion of momentum, to the turbulent diffusion of energy, 
the turbulent Prandtl number is presumed to be constant. Thus: 

ex e (13) 

In the equation for the constants that would appear in the equation are absorbed into the 
correlations for This yields: 

where: n 
m=l--

2 

(14) 

(15) 

For = 0.2, the exponent min Equation (14) equals 0.9. Rogers and co-workers and Rehme use 
an exponent of 0.9 for the Reynolds number dependence in their correlations. Petrunik uses an 
exponent of 0.827. 

Care must be taken in calculating a combined Reynolds number for the two adjacent subchannels 
for use in Equation (14). Differences in geometry or the presence of flow obstructions can result in 
different Reynolds numbers in the adjacent subchannels. There does not appear to be a uniform 
method used for calculating the combined Reynolds number since different researchers use 
alternative methods. Indeed, some researchers are ambiguous as to the method used to calculate 
that quantity. For adjacent subchannels of the same geometry, the Reynolds numbers in each 
subchannel should be the same. Differences in the Reynolds numbers will occur when the 
subchannels have different hydraulic diameters or are subjected to non-uniform obstructions. This 
problem is discussed further in Section 4. 

3.2 Correlations for the Geometrical Parameter 

The geometrical parameters that impact on the mixing due to turbulence include the ratio of the 
gap spacing to rod diameter (c/d), the shape of the subchannel pair, and the presence of bundle 
appendages. Subchannel shapes in the bundle interior are classified as triangular or square (see, 
for example, subchannels 28 and 10 in Figure 1). As a result of the two subchannel types, three 
subchannel-pair configurations are identified. These are triangle-triangle (T-T), square-square 
(S-S) , and square-triangle (S-T). Examples of T-T, S-S, and S-T configurations are given by 
subchannels pairs (9,24), (10,26), and (10,11) in Figure 1. The square subchannels adjacent to the 
pressure tube wall represent a third type of subchannel. For the purposes of calculating turbulent 
transport, these subchannels are normally treated as square. 

Bundle appendages impact on thermal mixing via two mechanisms. Firstly, they create a mean 
diversion crossflow induced via radial pressure gradients. Energy is therefore advected between 
adjacent subchannels by the mean radial flow. Secondly, bundle appendages promote fluid 
turbulence by increasing the production of turbulent kinetic energy. Hence correlations derived 



Table 1: Summary of Experimental Conditions 

I 
Rogers Rogers Rogers Rogers Rehme Petrunik 

(bundle) (S-S) (S-T) (T-T) 

sub channel S-S, S-T S-S S-T T-T S-S, S-T S-S, S-T 
types T-T T-T T-T 

no. of studies 8 3 3 3 24 5 
no. of points 44 57 33 106 41 53 

c/d 0.083 0.0355 .035 0.033 0.011 0.035 
to 0.4 to 1.108 to 0.149 to 0.4 to 0.83 to? 

Reynolds No. 2.5 14 26 1.35 1.35 6.0 
X to 127 to 150 to 130 to 70 to 70+ to? 
Fluids air, air, air, air, air, 

Freon Freon, ... Genetron-12 

from experiments where appendages were present (i.e., 'bundle' correlations) should be 
distinguished from those obtained from clean or 'simple' geometries. The correlations of Rogers 
and co-workers [7] [8], Petrunik [9], and Rehme [10] are discussed in turn below. The 
experimental conditions used for each of the correlations is summarised in Table 1 and a summary 
of the formulations for is presented in Table 2. 

3.2.1 Correlation of Rogers and Co-Workers. In this section the correlations of Rogers and 
Rosehart [7] and Rogers and Tahir [8] are presented. Rogers and Rosehart distinguish between 
'simple' and 'bundle' geometries whereas Petrunik and Rehme do not. It should be noted that in 
this study it was not possible to assess the conditions distinguishing the simple versus the bundle 
geometries, since most of the data on which Rogers and co-workers based their results are 
published in inaccessible reports during the 1960's. However, even in Rogers and Tahir's study of 
a simple T-T bundle, it is not clear how the rods are supported, except that the authors note the 
walls are supported by rigid yokes at a spacing of about 0.6 m (equal to 24 rod diameters). This 
implies that even in supposedly 'simple' experiments, there are 'bundle' type conditions to be 
found - as expected in any physical experiment. 

Bundle Geometries 

For bundle geometries, Rogers and Rosehart propose that 

Values for the constants Kand in Equation (16) were found by considering eight different 
studies (for a total of 44 points). These studies included data of all subchannel types, with 
working fluids of air, water and Freon. From these experiments, values of = 0.0058 and 
r = 1.46 were deduced. Their correlation is limited to c/ d values of 0.08 to 0.4, and Reynolds 
numbers greater than about 20,000. 

Simple geometries 

(16) 

For simple geometries, was found to depend on the shape of adjacent subchannel in 
addition to the c/d ratio. Hence, separate correlations were developed for each of the T-T, S-S, 
and S-T pairs. 



Table 2: Summary of Correlations for 

Rogers' simple correlations: Rehme's correlations: 
S-S: = S-S: = 0.00531{(1 + 
S-T: = S-T: = 0.00673{(1 + 
T-T: T-T: 0.00921{(1 + 

Rogers' bundle correlations: Petrunik's correlations: 
S-S: = S-S = 
S-T: = S-T = 
T-T: T-T 

The S-S expression was correlated by Rogers and Rosehart [7] using solely other researchers' data. 
The S-T and the T-T expressions were correlated by Rogers and Tahir [8]. For the T-T 
correlation Rogers and Tahir included their own data ( one data point only) in addition to two 
researchers data. For the S-T correlation Rogers and Tahir used the data of Singh and St. Pierre 
[12], [13] as well as the data used originally by Rogers and Rosehart for a tentative S-T 
correlation. It should be noted that Rogers and Tahir also verified the Rogers and Rosehart S-S 
correlation with the inclusion of Singh and St. Pierre's data and found very good agreement. 

3.2.2 Correlation of Petrunik. Petrunik [9] measured the mixing velocities for both single-phase 
and two-phase conditions in a T-T configuration. His single-phase measurements included water 
and Genetron-12 as working fluids. For his mixing correlation, however, he included other studies 
using both simple and bundle geometries. These studies encompassed the other configurations as 
well as additional gap-to-diameter ratios. He concluded that the mixing rate, does not 
significantly depend on the gap-to-diameter ratio c/ d. 

From an experimental fit of the mixing velocity versus the Reynolds number, he determined: 

I 

W· · = 0.009Re0
·
827 

µ 

Thus, from Equation (7), the non-dimensional mixing length is: 

= 

(17) 

(18) 

It should be observed that the Reynolds number exponent in the Petrunik correlat ion is not 0.9 
as in the Rogers and co-workers models, but rather 0.827. This value was obtained directly from 
his subchannel measurements rather than from the pipe data of Knudsen. Most importantly, 
however, the mixing velocity is not function of the c/ d ratio or the subchannel type. The data 
base for this correlation includes S-S, S-T and T-T configurations. 

3.2.3 Correlation of Rehme. Rehme [10] developed a model which provides a good 
approximation of the mixing rate for any gap geometry. The empirical component is entirely 
based on other researcher's data with a large overlap to those data used by Rogers and 
co-workers. It is also in essence the same model as developed by Ingesson and Hedberg [14] . 

As was shown earlier, the heat transported across the gap can be expressed as 

= (19) 



The gradient is approximated as 

dz ·· z·· ' 
(20) 

Rehme sets the mixing distance, equal to the distance between the centroids of the adjacent 
subchannels, The mean heat eddy-diffusivity is now expressed as where a 'reference 
eddy viscosity' (for momentum) and Y is a 'mixing factor'. This mixing factor accounts for how 
much higher the actual mean heat eddy-diffusivity is in comparison with the reference eddy 
viscosity and also includes a correction for the linear temperature gradient approximation. The 
centroid distance is used for convenience. Thus, 

T·-T· = (21) 

Rehme suggests that the reference eddy viscosity be given by the non-dimensional eddy viscosity 
at the center of a smooth circular tube, following Reichardt [15]. Rehme obtains: 

where: 

Blasius friction factor 

= 4f = 

and =0.046 and n=0.2. 

(22) 

(23) 
(24) 

The factor of 20 appearing in Equation (22) is different from the factor obtained by the current 
authors when re-deriving that equation. Fundamentally, however, this does not alter the 
correlation since Y in Equation (21) is fitted experimentally. 

Empirical fit for Y 

Using available data from the literature (including the data used by Rogers and co-workers), and 
data for all gap geometries, Rehme arrives at the following correlation for the mixing factor: 

Y 0.7 
C • 

By substituting Equations (22) to (25) into Equation (21), and noting that = the 
turbulent heat transfer across the gap can be written as: 

Q 0.00531 _ ·) 
cf d 

where m = 1 - n/2 = 0.9 (usually) . Hence: 

= ( 
µ 

(25) 

(26) 

(27) 

The ratio of the fuel rod diameter, d, to the centroidal distance, must be defined. By 
considering rod configurations with uniform rod diameters and gaps, the following ratios can be 
defined: 



S-S: 
d 

= 

T-T: 
d 

l. 732 1 + -l 
S-T: 

d 
1.267 (1 + 

Thus, the mixing rate for each subchannel configuration is given as: 

S-S: = 0.00531 ( 

T-T: = 0.00921 ( 

S-T: = 0.00673 ( 

The corresponding equations for are given by: 

S-S: = 0.00531 { (1 + 

T-T: = 0.00921 { (1 + 

S-T: = 0.00673{(1 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

It should be noted that Rehme does not specify how the Reynolds number is calculated. For 
'simple' twin S-S and T-T configurations the Reynolds number in adjacent subchannels should be 
the same. For S-T configurations, correction is required. This correction is discussed in detail in 
the following section. 

4. CORRECTIONS FOR UNEQUAL REYNOLDS NUMBERS IN S-T SUBCHANNEL PAIRS 

The general formulation for the turbulent mixing rate is given by: 
I 

c m - = 
µ d 

(38) 

where m = 1 n/2. The Reynolds number in Equation (38) is representative of the Reynolds 
numbers in the two adjacent subchannels i and j. This Reynolds number can be evaluated using 
different methods: 

Method 1: 

Method 2: 

-Re- 2 

Re = 
(39) 

(40) 

With Method 2 the two subchannels are effectively combined to make one large subchannel, thus 
and are the average velocity and the hydraulic diameter, respectively, for the combined 

sub channel. 

It is desired to determine a correction factor, K, such that: 

Re= (41) 



where is the Reynolds number in the square subchannel (subchannel i). 

To derive a correction factor for each method of calculating Re, the following relationships are 
required: 

For a Square Sub channel ( i): 

= wetted perimeter = 

= flow area= (c + -

= hydraulic diameter = ( ( 1 + )2 - 1} 

For a Triangular Subchannel (j): 

d 
. 

wette perimeter = 

= 
2 fl.ow area= + d) -

= hydraulic diameter = ( + 
2 

1} 

(42) 

(43) 

(44) 

(45) 

( 46) 

(47) 

Also required is the ratio of the Reynolds numbers in subchannels i and This ratio can be 
found by considering fully developed fl.ow in parallel subchannels subjected to the same pressure 
drop. From such an analysis the following relationship can be deduced: 

(48) 

where n is the exponent in the friction factor correlation and is usually taken to be 0.2. 

4.1 Reynolds Number Correction for Method 1 

By using Method 1 to calculate the Reynolds number, it is seen that: 

J 

2 
(49) 

= (
l+ Rm 

2 (50) 

But applying Equation ( 48) yields: 

(51) 

The mixing velocity, for S-T subchannels can therefore be written as: 

(52) 



where: 

and 
+ -

1.2732(1 + - 1 

4.2 Reynolds Number Correction for Method 2 

The second method for calculating the Reynolds number is to combine the two adjacent 
subchannels into a single larger subchannel. Hence, 

= 

where: 
P P + = = + 

(53) 

(54) 

(55) 

(56) 

Note that Equation (56) presumes that the density and viscosity in each subchannel are the same. 

By noting that: 

+ 

= 

= 0.5 

The combined Reynolds number can be written as: 

Hence, the mixing velocity can be written as: 

where: 

and 
_ + -

1.2732(1 + - 1 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 



4.3 Application of Reynolds Number Correction to Correlations 

In the Rogers and co-workers model the Reynolds number is calculated using Method l. 
Following the methodology used in ASSERT-PV, the Petrunik model is calculated here using 
Method 2. Rehme is ambiguous as to the calculation of the Reynolds number. In the current 
paper, we will use Method 1 for Rehme's correlation. 

As discussed earlier, for the twin S-S and T-T configurations, the two methods are identical since 
= A summary of the final expressions for is given in Table 3. 

5. COMPARISON OF MIXING MODELS 

Figures 2 and 3 show the turbulent mixing rate, as a function of Reynolds number for c/d 
values of 0.1 and 0.2, respectively. All three geometrical configurations are shown. Several 
observations can be made: 

1. The influence of the c/ d ratio is much larger for the Rogers' bundle model than for any of 
the others. 

2. For both the S-S and the S-T configurations, the Rogers' simple, Rehme's and Petrunik's 
models are very close and distinctly separate from Rogers' bundle model. In the T-T 
configuration, Rehme lies somewhere in the middle. 

3. Rogers' bundle model consistently predicts the highest mixing velocities. 

4. Petrunik's model is of course nominally independent of the c/d ratio. For the S-T 
configuration, however, a slight c/d dependence due to the asymmetry is apparent. 

5. Except for Rogers' bundle and Rogers' simple T-T all correlations are very insensitive to the 
c/d ratio - much less than to the Reynolds number. This is an observation often mentioned 
in the literature. 

6. VALIDITY OF CORRELATIONS FOR STEAM FLOWS 

In this section the validity of the turbulent thermal mixing correlations for single-phase steam 
conditions is discussed. The discussion is based on the underlying similarity to a pipe flow and by 
experimental verification with other gas flows. These two approaches are presented separately 
below. 

6.1 Comparison to Pipe Flow 

The fundamental assumption of the subchannel thermalhydraulic modelling is that the subchannel 
flow is equivalent to a pipe flow based on the equivalent subchannel hydraulic diameter. With this 
assumption, both pressure losses and turbulent mixing are being evaluated. This assumption of 
equivalency is supported by experimental evidence which suggests that measured friction factors 
in subchannels (i.e. , pressure losses) agree well with those from a round pipe evaluated with an 
equivalent subchannel hydraulic diameter. Rogers and Tahir [8] , for example found that 
f = which is very close to the correlation for smooth tubes as given by Knudsen [11]. 
Their c/d ratio was 0.4. Rehme [16] examined this issue in detail and found that : 

'For the pressure-drop coefficient [friction factor] there is a rapid increase from 60% 
of the circular tube value at a rod distance of c/ d = 0 to approximately 100% at 
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Table 3: Summary of Correlations for 

Rogers' simple correlations: Rehme's correlations: 

S-S = 0.0050Re?·9 S-S 3i. = 0 00531 (-1-) · 

S-T - 0 0054R ( f) 0·
05° K' S-T 3i_ _ ( 1 ) 0.9 , 

µ - · ei d C µ - 0.00673 l+c/d Rei Kc 

T-T * = 0.0018Re?·9 (a)-o.4 T-T 3i. = O 00921 ( 1 !) Re9·9 
µ . I+c7il i 

Rogers' bundle correlations: Petrunik's correlations: 

S-S ~ = 0.0058Re?·9 (a)-o.46 S-S 3i. = 0.009Re?°827 
,µ 

S-T * = 0.0058Re?·9 (a)-o.46 
K~ S-T ~ = 0.009Re?·827 K c" 

µ I 

T-T . ~ = 0.0058Re?·9 ( a )-0.46 T-T ~ = 0.009Re?·827 

where: 

with 

K~ = ! {1 + (l.1027 (1 + c/d):- 1) 1.5} and K; = { (~3) (1 + _21 (DD:)½) }o.s21 
2 1.2732 (1 + c/d) - 1 . 

Dj _ 1.1027 (1 + c/d)2 
- 1 

Di - 1.2732 (1 + c/d)2 
- 1 

c/d ~ 0.08. For higher rod distance ratios, the pressure-drop coefficient increases to 
only some 110% of the tube value for c/ d = l.' [16] 

This agrees with Rogers and Tahir's results at their relatively high c/ d ratio. 

The frictional losses are a function of the eddy viscosity in the radial direction, defined by 

u'v' 
Emr = - 8u' 

8y 

where y and v are normal to the rod. One would expect that these eddy viscosities are close to 
those in a pipe, given the foregoing results of Rogers and Tahir, and Rehme. Meyer [17] examined 
a central channel of a 37-rod bundle with c/d = 0.12 and did indeed find that the radial eddy 
viscosity is close to Reichardt's circular pipe data (although slightly higher) and not a function of 
azimuthal direction. 

While the radial eddy viscosity is similar to that in a pipe, the azimuthal eddy-viscosity tends to 
be larger in a subchannel than in a circular pipe, especially near the gap region. In other words, 
the anisotropy or the ratio of the azimuthal to the radial eddy-viscosity is larger in subchannels. 
The azimuthal eddy-viscosity is defined by 

where w is the velocity component parallel to the rod wall, r is the distance from the center of the 
rod and is the azimuthal angle. 



Meyer [17] , for example, found that the azimuthal eddy-viscosity is higher than the radial 
eddy-viscosity away from the rod, especially in the gap region, perhaps by a factor of 3 or 4, 
whereas in a pipe this ratio is at most about 2 [19]. In a wall channel of the 37-rod bundle, with a 
wall-to-diameter ratio of 0.06, the ratio was even higher, up to about 200 in the gap between the 
wall and the rod (Krauss and Meyer [18]). 

At the core of all three models is essentially the same form of the eddy-viscosity model: 

(65) 

In the models, the anisotropy or specifically the differences between the given eddy-viscosities and 
those occurring in the subchannels, are accounted for in a lumped-parameter analysis by 
empirically fitting the data with the help of 'adjustment factors' which depend on the subchannel 
geometry. The lumping and fitting also accounts for the spatial variations of the eddy-viscosity. 
In the Rogers model, the adjustment factor is introduced via the non-dimensional mixing distance 

and in the Rehme model, where the mixing distance is assumed to be the 
centroid-to-centroid distance ( the adjustment factor is introduced via the mixing factor (Y). 
These adjustment factors take into account the geometric dependence of the eddy-viscosity by 
fitting a functional dependence on the c/ d ratio. The proportionality constants in these 
adjustment factors account for the spatial averaging of the eddy-viscosity. 

The Reynolds-number dependence of the above models, on the other hand, is independently 
introduced via the friction-factor relationship, i.e., the Reynolds number exponent m = 1 - n/2 in 
the above equations is obtained from f = This relationship is independent of the 
anisotropy, the geometric dependence ( c / d), or the spatial variation. 

To answer the question of whether or not steam can be used in the models, is tantamount to 
asking whether the above Reynolds-number dependence is correct, or, more specifically, whether 
the eddy-viscosity depends on any other fluid-property dependent parameters. The above 
discussion demonstrates that there is no reason to believe that the eddy-viscosity depends on any 
other fluid-property dependent parameter except the Reynolds number, much like circular-pipe 
fl.ow, open-channel fl.ow, rectangular-channel fl.ow or boundary-layer fl.ow. To be sure, 
anisotropies, geometric dependence and spatial dependence will differ, but these can be 
independently accounted for, by, in a sense, adjusting the K 'constants' above. Given that the 
eddy-viscosities depend on the Reynolds number and no other fluid-property dependent 
parameter, dynamic similarity through the use of the Reynolds numbers assures us that any fluid 
can be used. It should be noted that to the extent that the Reynolds-number exponent mis 
inaccurate, the final mixing velocity is no less accurate for one fluid versus another. 

6.2 Correlations with Air Data 

As final verification that the models are valid for steam, the correlations will be compared to the 
available data on air. This is a reasonable comparison, given that both fluids can be treated as 
ideal gases with similar Prandtl numbers. 

Figure 4 shows the correlations and experimental data for the symmetric S-S configuration, 
Figure 5 for the asymmetric S-T configuration, and Figure 6 for the symmetric T-T configuration. 
The experimental data, denoted by the symbols, are summarised in Table 4. The quantity is 
considered since it is independent of the Reynolds number. As discussed earlier, the Reynolds 

2 Petrunik determines the exponent m directly from the mixing data and in fact obtains a constant (0.827) which 
is close to the one obtained from the friction factor 's Reynolds number exponent m. A fit of Rogers and Tahir's 
data versus revealed that m = 1.0 - but they did not do this for their correlation, although it would have 
improved the independence of the Reynolds number for 



Table 4: Experimental-data summary 

Symbol Reference Fluid Source Their Ref. 

B Bowring (1969) Freon Rogers and Rosehart [7] (19) 
BA Bishop et al. . (1962) H20 Rogers and Rosehart [7] (15) 
BR Biggs and Rust (1967) H20 Rogers and Rosehart [7] (17) 
C Clarke (1961) H20 Rogers and Rosehart [7] (10) 
CF Collins and France (1958) Air Rogers and Rosehart [7] (14) 
H Hetsroni et al. (1968) H20 Rogers and Rosehart [7] (18) 
K Kielstrom (1972) Air Rogers and Tahir [8] (8) 
N Nelson et al. (1960) H20 Rogers and Rosehart [7] (16) 
p Petrunik (1973) H20 Rogers and Tahir [8] (9) 
R Roidt et al. (1973) Air Rogers and Rosehart [7] (11) 
RA Rowe and Angle (1967) H20 Rogers and Rosehart [7] (7) 
RT Rogers and Tahir [8] Air Rogers and Tahir [8] 
RP Rapier (1967) Air Rogers and Rosehart [7] (12) 
s Seale [19] Air Seale [19] 
T Rogers and Tarasuk (1966) H20 Rogers and Rosehart [7] (2) 

number dependence usually comes directly from the friction factor relationship and is not fitted 
empirically (except by Petrunik) . The actual empirical fits are made directly (Rogers and 
co-workers), or indirectly (Rehme, Petrunik), with regard to Thus, it makes most sense to 
compare the models in conjunction with data on this basis. 

Unfortunately, no air data was available for the S-T configuration. Nevertheless, there is no 
reason to believe the general agreement would different for this configuration. 

Again, with a global perspective, it is noted that all data fall within the range of the correlations, 
as expected. More specifically, both the air and the water data fall within the range. Thus, there 
is no evidence to suggest that air data somehow behaves differently. Furthermore, the majority of 
the air data, except that by Collins and France, fall closer to Rogers's simple correlation. This 
includes the most recent data available, by Seale [19]. Rehme's correlation appears to 
overestimate the available data for higher c/ d ratios in the T-T configuration, but agrees well in 
the S-8 configuration. It should also be observed that the data by Rapier, which Rogers classified 
as bundle data, actually falls closer to the simple correlation (in the S-S configuration). 

In summary, it can be concluded that the experimental data supports the earlier conclusion that 
the mixing for a gas, in this case air, would be well predicted within the accuracy of the 
correlations, just as well as for liquid water. 

7. SUMMARY 

This paper has been concerned with mathematical modelling of the turbulent transport of energy 
in subchannel geometries. The specific intents were to compare existing correlat ions for turbulent 
thermal mixing and to determine the applicability of the correlations to flows of superheated 
steam. 
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Figure 4: Non-dimensional mixing distance versus gap-to-rod diameter ratio for S-S geometries. 
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Figure 5: Non-dimensional mixing distance versus gap-to-rod diameter ratio for S-T geometries. 
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Figure-6: Non-dimensional mixing distance versus gap-to-rod diameter ratio for T-T geometries. 

The correlations for the mixing rate, are typically a function of the Reynolds number the 
fl.ow and the ratio of the gap spacing, c, to the fuel rod diameter d. Of the correlations considered 
in this work (Rogers and co-workers [7] [8] , Petrunik [9], and Rehme [10], the same (or very 
similar) Reynolds number dependence was used. Further, Rogers and co-workers distinguished 
between simple and bundle geometries, whereas the others did not. The Rogers bundle 
correlation consistently predicts the highest mixing rate and also shows the greatest sensitivity to 
the value of c/ d. Petrunik's model and Roger's model for simple geometries provided the lowest 
values of the mixing rate. 

The applicability of the models to steam flows was assessed by considering both the derivations of 
the correlations and experimental data for flows of air. From consideration of the derivation, 
there is no basis for restricting the models to liquid flows only. Further, comparison of the 
correlation predictions to experimental data for air flows (for S-S and T-T geometries) shows that 
the data fall within the range of the correlations. Thus, it is concluded that the correlations are 
equally valid for vapour as for liquid water. 
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