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The objective of this research was to investigate the feasibility of monitoring sensor accuracy using Principal 
Component Analysis (PCA). The specific project was to develop and test a monitoring scheme for the pressure- 
based transmitters associated with an operationul C A N D ~  nuclear generating station. The results of the research 
indicate that individual groups of redundant sensors can be adequately monitored using PCA models with one to 
four principal components. These models can generate warning alarms for errors of small magnitude and action 
alarms for large magnitude errors. 

1. INTRODUCTION 

The instrumentation used to measure the process variables related to the CANDU safety shutdown systems must 
maintain a high degree of accuracy. Usually, the correct operation of the transmitters used to measure the process 
variables will be verified by process trip tests and visual panel checks. While both of these methods verify that the 
transmitters are working, they are not always sufficiently sensitive to determine if the transmitters are meeting their 
accuracy requirements [I]- Ordinarily, transmitter accuracy is verified by off-line recalibration. For CANDU safety 
systems, recalibrations are done every one to three years. However, recalibrations have disadvantages in terms of 
both increased maintenance costs when a recalibration is in fact unneeded and potential for transmitter drift outside 
the allowed calibration range in periods between scheduled recalibrations. It would be desirable to do the 
calibrations only when they are required, as indicated by an on-line instrumentation monitoring system. 

Much work has been completed in the area of on-line instrumentation monitoring [1,2,3]. One technique for 
monitoring the overall process which is becoming increasingly popular in the chemical industry is the use of 
multivariate statistical methods for Statistical Process Control (SPC) [4,5]. These techniques involve setting up 
control charts with limits based on the natural or inherent variability in the process. The goal of the control chart is to 
minimize the number of Type I errors (false alarms, nuisance alarms, etc.) while detecting actual process faults as 
quickly as possible. A Type I error is said to have occurred if the control chart indicates there is a fault present when 
in actual fact there is no fault present. If the control charts actually misses an actual fault, a Type II error is said to 
have occurred. The multivariate statistical methods most commonly used are the projection methods of Principal 
Component Analysis (PCA) or Partial Least Squares (PLS). These projection methods can be used to reduce the 
dimension of the problem. This is a desirable feature for two reasons. First, the introduction of computers and 
sophisticated, high speed data acquisition systems has lead to the very frequent measurement of hundreds of process 
variables. This large amount of data can very quickly become overwhelming. Second, all the measured variables are 
not independent. Typically, there are only a few underlying events driving the process and each measured variable 
gives a little different information on the events. This causes the rank of the data matrix to be less than the number of 
variables and causes computational difficulties if traditional multivariate approaches are used. 

C A N D ~  is a registered trademark of Atomic Energy of Canada Limited (AECL). 



The purpose of this project was to investigate the use of PCA, within a SPC monitoring methodology, to detect faults 
in the pressure-based transmitters associated with the two shutdown systems in a CANDU reactor. AECL is 
currently investigating this problem using other statistical techniques El, 61. The paper will discuss both the 
development of a monitoring methodology using PCA and an initial sensitivity analysis. Section 2 will provide a 
description PCA and the monitoring methodology. Section 3 will outline the requirements of the monitoring system 
and describe the data used for the project. Section 4 will present the results of the analysis and Section 5 will present 
some conclusions and possible areas for future work. 

2. PROCESS MONITORING USING PCA 

2.1 PCA 

A description of PCA was presented at the 1996 Annual CNS conference [7]. The analysis will be briefly reviewed 
here. PCA is a technique for transforming a group of correlated variables via linear combinations of the original 
variables into a new group of uncorrelated variables. PCA can also be used to reduce the dimension of a data matrix. 
Geometrically, this represents a rotation of the principal axis system, as shown in Figure 1 for a simple three 
dimensional problem. As observed in Figure 1, the first principal component is in a direction such that it explains the 
maximum amount of variation in the original data set with a linear combination of the original variables. The second 
principal component explains the next largest amount of the variation with a linear combination subject to the 
condition it is orthogonal to the first principal component. 

For systems larger than three dimensions, a geometrical interpretation is difficult to do. However, the system can be 
described in a manner shown in Figure 2. Two terms commonly used with PCA are loadings and scores. These 
vectors are shown in Figure 2. The ah loading vector defines the direction of the aa principal component with respect 
to each of the original coordinate axis. The size of each element in the a~ loading vector shows the relative 
importance of the associated original variable to the ath principal component. The frst score vector, t,, is the linear 
combination of the first loading vector and the X matrix, that is, 

t l  = X P ~  (1) 
The first score vector represents the location of the individual observations on the first principal component. The a' 
score vector is calculated and interpreted in a similar manner. There are as many loading and score vectors as there 
are original variables in the data matrix X. It can be shown that first loading vector is the eigenvector associated with 
the largest eigenvalue of the covariance matrix of X. The second loading vector is the eigenvector associated with 
the next largest eigenvalue and so on. It can also be shown that the eigenvalues are the variances of the 
corresponding score vectors. If the sum of the variances of all the variables is used as a measure of the overall 
variability of the data set, the eigenvalues may be used to calculate the amount of variability explained by the 
principal component. For example, the ratio of the first or largest eigenvalue over the sum of all the eigenvalues will 
be the fraction of the variability explained by the first principal component. 

PCA is scale-dependent, meaning that the contribution to the total variance of a data set for a specific variable is a 
function of the units of measurement of that variable [ 5 ] .  In order not to have one variable dominate the analysis due 
to its large variance, the variables must be scaled in some meaningful way. Typically, the starting place for scaling is 
to meancenter and auto-scale the data. Auto-scaling means dividing each observation for each variable by the 
standard deviation of the variable. Hence, each variable has unit variance. This is the form of scaling used for this 
project. 

2.2 Process Monitoring 

The general monitoring method of SPC is as follows. First, historical data is collected from the process when it is 
operating normally. It is important at this step to remove any data which represent faults that should be detected in 
the fume.  Therefore, the data used to develop the monitoring scheme should contain only inherent variability. Next, 
a statistical model is developed which accurately describes this process data. Finally, new data can be compared to 
the model to determine if the process is continuing to operate normally or if there is a fault present. When SPC was 



frst  being developed in the 1930's. typically, there were very few measured variables and hence it was possible to 
track the variables individually. That is, there would be one statistical model for each variable. However, as the 
number of measured variables increases into the hundreds, tracking individual variables can become an 
overwhelming task. Also, if the variables are correlated, the individual control charts may miss process faults which 
effect this correlation. Methods for combining the univariate schemes into multivariate schemes have been 
developed. However, these schemes involve inverting the covariance matrix of the data set. If the variables are 
highly correlated, this matrix can be singular or highly illconditioned. One way to overcome this difficulty is to 
reduce the dimensionality of the data matrix using PCA. 

2 3  PCA Model Development 

By rearranging equation 1, the PCA model using all the principal components can be written as: 
x = T P ~  (2) 

where: X - historical data set containing only inherent variability 
If X contains many highly correlated variables, usually the first few principals will explain most of the significant 
variability in the system. They will be characterized by large, well separated eigenvalues and represent variability 
which can be  attributed to natural correlations present in the data. These principal components should be retained in 
the model for monitoring purposes. The remaining principal components can be discarded. Therefore, the PCA 
model can be written as: 

A k 

where : x = tip: 

k 

Error = xtipT 
j=A+1 

As seen from equation 3, the X matrix is broken down into a prediction, X , using the "A" principal components 
retained in the model and a residual error. Development of the PCA model involves determining two items; the 
number of principal components to be retained and the loadings associated with each retained principal component. 
There are several statistical tests which can be used to determine the number of principal components to retain. They 
include plotting the eigenvalues, evaluating the size of the eigenvalues or cross-validation [8] .  The loadings can be 
calculated sequentially by using the NIPALS algorithm [9]. 

2.4 Process Monitorinp With PCA 

Once a PCA model has been developed from historical data, it can be used to monitor the process for future faults. In 
order to do this, two items must be monitored; the scores retained in the model and the error between the model and 
the new observation. This is done by calculating the following quantities: 

1. Calculate the scores (ti's) for of the each principal components, as follows: 
for i =1: A 

T t i  = p i  *XNEw 
T XNEW = XNEW - t a p -  

1 1  

end 
2.  Calculate the Squared Prediction Error between the model and the new observation, as follows: 



Referring again to Figure 1, which represents the case where there are 3 variables in the X matrix, i t  is noted that 
when two principal components are used in the model, they represent a plane. The SPE represents the distance from 
the new observation to the plane. This is also shown in Figure 1. Control limits for both the individual scores and the 
SPE can be calculated from the historical data set 141. If the new observation represents normal operating data, all 
the scores and the SPE will remain below their control limits. If the new observation represents an event that was not 
included in the historical data set, the correlations between the variables will be changed and the covariance structure 
will be changed. This will cause the new observation to move further away from the plane than normal and will be 
detected by a high SPE value. If the new observation represents an event which causes larger than normal variations 
in the principal components used in the model but the basic correlations between the variables does not change, it 
will be detected in a shift in the scores. These points will be expanded on in the Section 4. 

3.0 PROJECT DATA AND GUIDELINES 

As stated in the introduction, the purpose of this project was to investigate the detection of faults in pressure-based 
transmitters using process monitoring methods based on PCA. Two items were required before the investigation 
could begin; data and guidelines for the types and magnitudes of faults to be detected. The data used for this project 
included the measured variables associated with the two shutdown systems of a CANDU nuclear generating station. 
These variables are summarized in Table 1. As observed from Table 1, there were 12 variables in redundant groups 
of either 3 or 6 for a total of 60 signals. Ten days of steady state data was acquired from an operational reactor at 
approximately 2 second intervals. 

In order to detect pressure transmitter faults, a monitoring system should be sensitive to small offsets, drifts, 
intermediate errors and spiking in sensor outputs. A monitoring scheme should also be able to detect signals which 
are noisier than normal or lagging in their response to an actual transient. Of these six failures, an offset error is the 
easiest to use for testing the sensitivity of the monitoring program. The magnitude of the offset error which should be 
detected by the monitoring scheme can be based on the quantization level of the uansmitter. Here, the quantization 
level is considered to be the minimum interval between two adjacent digital values. For the initial sensitivity 
analysis, it was decided that the monitoring scheme should be able to detect offsets of greater than one quantization 
level. Offsets between 1 and 5 quantization levels would be considered interesting but perhaps not very significant 
and should initiate a warning alarm. Offsets larger than 5 quantization levels would be considered significant and 
should initiate an action alarm to determine their root cause. These guidelines were set after consultation with AECL 
[lo]. It should be noted that if the data is averaged, it could be possible to detect offsets smaller than 1 quantization 
level. However, offsets this small were considered insignificant and the lower limit of 1 quantization level was set. 
Table 2 summarizes the quantization levels and the magnitudes of the important offsets for the 12 variables. 

4.0 RESULTS 

This section will describe the results from the two main steps completed for the project. These steps were the 
development a of a PCA model based on historical steady state data and a sensitivity analysis. 



4.1 PCA Model Develo~ment 

4.1.1 Initial Analvsis. 

As stated earlier, the historical data set used to develop the statistical model must contain only inherent process 
variability. For this reason, data collected from an operational process typically must first be scanned for obvious 
anomalies or outliers. To do this, a simple two principal component model was developed using data which was 
averaged over 15 minutes. This model easily identified process trip tests which were contained in the data. The 
observations associated with the process trip tests were removed from the data set. The initial model also identified 
one transient which appeared to be a power transient. The observations associated with this transient were left in the 
data set because small power transients are to be expected during normal. A PCA was then calculated using 3 
principal components. This model was able to explain approximately 5 1 % of the variability in the data set. However, 
an initial sensitivity analysis indicated that offsets of 5 quantization levels could not be detected for the header 
pressures, boiler levels, feedline pressures or flowrates. This clearly indicated that the monitoring scheme would not 
meet the sensitivity requirements outlined in Table 2. In order to improve the sensitivity of the monitoring scheme, it 
was decided to develop PCA models for the individual variables. 

4.1-2 Individual PCA Models. 

It was decided to build PCA models for the similar process variables as opposed to the individual process vanables. 
Therefore, individual PCA models were developed for the 6 following variables: 
1. Header Pressure (12 transmitters) 
2. Pressurizer Level (6 transmitters) 
3. Boiler Level (23 transmitters) 
4. Boiler Feedline Pressure (6 transmitters) 
5. Differential Header Pressure (5 transmitters) 
6. HTS Flow (6 transmitters) 

It should be noted from the above list that one boiler level and one differential pressure were deleted from the data 
set. The boiler level signal was deleted because it was recalibrated during the 10 day period. The differential 
pressure signal was deleted due to what appeared to be excessive noise. However, the signal would still be capable of 
producing a reactor uip. Also, the averaging time was reduced from 15 minutes to 3 minutes. This was done to 
decrease the time required to detect the pressure transmitter faults. A 3 minute average was found to still reduce the 
noise to an acceptable amount [ll]. Table 3 summarizes the PCA models for each of the 6 variables listed above. In 
all cases except the flowrates, the first principal component represented an average of the transmitters. This was 
determined from the fact that all the weights in each of the first loading vectors were approximately the same. This 
was expected as all redundant sensors were highly correlated about their mean. For the header pressures and 
pressurizer levels, the first principal component represented over 95% of the variability or sum of squares in the data 
set. Therefore, for these variables, one principal component was used in the model even though some of the 
significance tests indicated that more than one principal component should be used. For the other variables, 
additional principal components were required. For the boiler levels and differential pressures, the additional 
principal components described the variability associated with correlations between groups within the variables. For 
example, the loadings for the four principal components for the boiler levels are shown in Figure 3. As observed in 
Figure 3, the loadings for the second principal component consist of large negative and positive values for boilers 2 
and 3 respectively and smaller negative and positive values for boilers 6 and 7 respectively. The same general trend, 
only with the larger negative and positive values for boilers 6 and 7 is observed in the fourth principal component. 
The variability explained by these principal components can be interpreted as the variability caused by levels of 
boilers 2 and 3 moving in the opposite directions to each other and the levels in boilers 6 and 7 moving in opposite 
directions to each other. By the same analysis, the variability explained by the third principal is the variability caused 
by the levels in boilers 2 and 3 moving in opposite directions to boilers 6 and 7. This would seem to make physical 
sense as boilers 2 and 3 are fed off one reactor outlet header and boilers 6 and 7 are fed off the other reactor outlet 
header located on the opposite side of the reactor. 



For the feedline pressures, the additional principal components explained some of the dynamics of the signals. This 
was found by lagging all the signals by one time step (3 minutes). Only the feedline pressure seemed to exhibit some 
time dependency in the signal. Finally, the loadings for the HTS flowrates are shown in Figure 4. Flows 1, 3,4, and 6 
are highly weighted in the first PC while flows 2 and 5 are highly weighed in the second. This appears to be a result 
of the suspected power transient which affect flows 1,3,4, and 6 but not 2 and 5. This may be a result of where the 
flows are measured in the core. 

4.2 Sensitivity Analvsis 

Using the PCA monitoring methodology, one would expect the pressure transmitter faults discussed in Section 3 to 
be detected in the SPE's. This is expected because the faults represent new events which should not be included in 
the historical data set. The software used for this project automatically calculated a SPE limit based on a scaled Chi- 
squared distribution [l2]. However, it was suspected that this limit would be too low for this application. That is, is 
was expected that there would be too many false alarms or nuisance alarms when there where no faults present. To 
test the sensitivities of the individual PCA models, offset errors of the sizes indicated in Table 2 were added to the 
data in the historical data set. Figure 5 shows the results for adding the warning and action offset to the Boiler 2, Ch. 
D level. As observed, the original SPE limit would have caused numerous false alarms. However, if the SPE warning 
limit and action limits were set at 1 and 2 respectively, there would be only two false warning alarms and no false 
action alarms. Also, an offset error of 5.0 cm would easily be detected. These limits were found to be valid for all 23 
boilers levels. Using the same methodology, warning and action SPE limits were determined for all six of the 
individual PCA models. They are summarized in Table 4. It should be noted that for the flowrates, only one limit 
could be identified. This was due to the fact that there was not a large gap between the 1 and 5 quantization level 
offset errors for the flowrates. This is highlighted in Figure 6 which shows the offset errors for HTS Flow 1, Channel 
E. This offset error analysis could also be extended to the intermediate error or spike faults. As long as the 
intermediate error or spike was greater than 5 quantization levels, the monitoring schemes would detect them for as 
long as they were present. 

In order to test the sensitivity of the PCA models to drifts, a drift of 1 quantization level per 8 hour shift was added 
to all the variables measured on Ch. D and the differential pressures measured on Ch. H. The results for when the 
warning and action alarms occurred are summarized in Table 5. A warning or action alarm was considered present if 
half of the observations over the previous 8 hours resulted in an alarm. As observed from Table 5, all the detection 
times seem to be reasonable, that is, all the action alarms occur within two days. 

Finally, in order to test the models for sensitivity to noise, normally distributed noise with a standard deviation equal 
to 3 quantization levels was added to the historical data for the Ch.D sensors and the Ch.H differential pressure 
sensors. The goal here was to determine if the PCA models could detect the additional noise in the sensor readings.. 
The results from these tests are given in Table 6. From Table 6, it is seen that warning alarms occur for 
approximately 40% of the observations while action alarms occur for approximately 20% of the observations. These 
results were considered marginal because it is debatable as to whether this type of noise could be picked up on 
simple panel checks while only 20% on the observations indicate action should be taken. 

5.0 CONCLUSIONS 

The above results indicated that an on-line monitoring system for instrumentation accuracy using PCA models is 
certainly promising. The six identified groups of redundant sensors can be modeled with one to 4 principal 
components in each case. In all cases except flowrates, the first principal component represented an average of the 
redundant sensors. The PCA models are sensitive to small offsets and drifts. The results from the sensitivity to noise 
analysis are considered marginal. 

While the results are promising, this project has pointed to many areas for future investigation. First, in theory, the 
historical data set used to build the PCA models should be representative of the process over long periods of time. If 
this is not the case, the models will begin to produce an excessive amount of false alarms when the process moves 
away from this operating range. Therefore, the models should be tested with data collected in future months and 



perhaps years to determine if they are still valid. Second, the models should be tested during large transients. If all 
the redundant sensors move together during the transient, the t 1 score, which represents the mean, should be effected 
while the SPE should remain within its limits. This was partially verified on the one transient included in the 
historical data set. It should be noted that the approach taken by AECL handles large transients very well [I]. Third, 
a sensitivity analysis was not completed for lagging responses. Basically, the whole area of including dynamics in the 
PCA models should be investigated more in-depth. Some work has been completed in this area [13]. Fourth, the 
limits given in Table 4 for the SPE's are hard limits, meaning anything below the limit will not cause an alarm and 
anything above the limit will. This means that the SPE could persistently be just slightly below the limit and no alarm 
would occur. A much more effective method for detecting small persistent shifts would be to use a CUSUM control 
scheme the monitor the SPE. CUSUM control charts are a well established form of SPC. The charts cumulate 
deviations from a target or desired value. Once the cumulations reach either a high or low limit, an alarm is given. 
Finally, work has been completed on combining blocks of variables into one multiblock consensus PCA model [14]. 
This would appear to be an ideal methodology for this problem. In this case, only one PCA model would be required 
instead of six individual models. Within the one CPCA model, there would be six blocks. 
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Table 1 
Measured Process Variables for SDSl and SDS2 

Table 2 

Process Variable 

HT Pressure Header 1 (MPa) 
HT Pressure Header 2 (MPa) 

Pressurizer Level (m) 
Boiler #2 Level (m) 
Boiler #3 Level (m) 
Boiler #6 Level (m) 
Boiler #7 Level (m) 

Boiler Feedline Pressure (MPa) 
HT Flow 1 (kglsec) 
HT Flow 2 (kg/sec) 

HDR 1-4 Differential Pressure (MPa) 
HDR 2-3 Differential Pressure (MPa) 

TOTALS 
? 

Quantization Levels and Alarm Offsets 

I Process Variable I Quantization I Warning Alarm I Action Alarm Offset I 

ChD 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

10 

SDSl 
ChE 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

10 

HT Pressure Header 1 
HT Pressure Header 2 

Pressurizer Level 
Boiler #2 Level 
Boiler #3 Level 
Boiler #6 Level 
Boiler #7 Level 

Boiler Feedline Pressure 

ChF 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

10 

Level 
10 kPa 
10 kPa 
1.4 cm 
1.0 cm 
1.0 cm 
1.0 cm 

HT Flow 1 
HT Flow 2 

HDR 1 -4 Differential Pressure 
HDR 2-3 Differential Pressure 

1.0 cm 
6.8 kPa 

ChG 
X 
X 
X 
X 
X 
X 
X 
X 

X 
X 
10 

Offset 
10 kPa 
10 kPa 
1.4 cm 
1.0 cm 
1.0 cm 
1.0 cm 

r 

0.027 kdsec 
0.027 kgjsec 
2.7 Wa 
2.7 kPa 

50 P a  
50 kPa 
7.0 cm 
5.0 cm 
5.0 cm 
5.0 cm 

1.0 cm 
6.8 kPa 

i 

SDS2 
ChH 

X 
X 
X 
X 
X 
X 
X 
X 

X 
X 
10 

5.0 cm 
34 kPa 

0.027 kg/sec 
0.027 kg/sec 
2.7 kPa 
2.7 kPa 

0.135 kglsec 
0.135 kg/sec 
13.5 kPa 
13.5 kPa 

ChJ 
X 
X 
X 
X 
X 
X 
X 
X 

X 
X 
10 

Total 

6 
6 
6 
6 
6 
6 
6 
6 
3 
3 
3 
3 

60 



Table 3 - 
PCA Model Summaries 

Table 4 
SPE Action and Warning Limits 

I SPE I Header I Pressur. I Boiler I Feedline I Differential T ~ l o w l  

Table 5 
Detection Times for 1 Quantization Level per 8 Hours Drift 

Alarm I Press. I ~ e v e l  Level 

1 
2 

Warning 
Action 

Process Variable 

HT Pressure Header 1 
HT Pressure Header 2 

Pressurizer Level 
Boiler #2 Level 
Boiler #3 Level 
Boiler #6 Level 
Boiler #7 Level 

Boiler Feedline Pressure 
HT Flow 1 
HT Flow 2 

HDR 1-4 Differential Press. 
HDR 2-3 Differential Press. 

2 
5 

Warning Alarm Detection 
Time (hrs) 

23.5 
21.6 
27.6 
24.7 
29.9 
20.8 
21.2 
16.3 
21.0 

-- 

32.4 
19.0 
20.2 

Rate 

20 
20 

2 
5 

Press. I press. 

Action Alarm Detection Time 
(hrs) 
26.4 
24.5 
38.0 
36.9 
38.5 
29.7 
30.1 
24.9 
21 .o 
32.4 
37.3 
38.9 

2 
7 

25 
120 



Table 6 
Percentage of Alarms Resulting From Noise Addition 

% Observations With Action 
Alarms 

20.4 
22.8 
20.0 
22.2 
19.9 
24.1 
23.7 
38.3 
32.5 
34.0 
22.8 
15.3 

Process Variable 

HT Pressure Header 1 
HT Pressure Header 2 

Pressurizer Level 
Boiler #2 Level 
Boiler #3 Level 
Boiler #6 Level 
Boiler #7 Level 

Boiler Feedline Pressure 
HT Flow 1 
HT Flow 2 

HDR 1-4 Differential Press. 
HDR 2-3 Differential Press. 

% Observations With Warning 
Alarms 

42.6 
44.6 
42.1 
40.6 
37.6 
42.6 
41.7 
64 .O 
32.5 
34.0 
58.9 
51.5 



Fiaure 1 : 
3-D PCA 



Fiaure 2 
PCA Terminology 

Data Matrix 

X 

1 first score 

where: 
k = number of variables 
n = number of observations 

first loading vector 
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Fiaure 4 
HTS Flow Principal Component Loadings 
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Figure 5: 

SPE for Boiler 2 Level, ChD; Warning and Alarm Offset Errors Added 
1 I I I I I I I I 

I cm Offset I I I I I I 

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 
Observation No. 



Figure 6:  

SPE for Flow 1, Ch E; Warning and Offset Errors Added 
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