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ABSTRACT 

This study extends Lawson's analysis on the ignition criteria for a magnetically 
confined plasma by introducing conduction losses from heat transfer theory rather 
than through the 3nkT/zE term (k = Boltzmann constant, T = temperature, TE = 
energy confinement time). It is found that ignition depends on the strength of the 
magnetic field that confines the plasma, but it is independent of the plasma particle 
density. As a consequence, an increase of reaction energy through higher particle 
density leads to higher conduction losses, which can be offset only by higher 
magnetic fields. It is found that a magnetically confined plasma cannot reach 
ignition with the magnetic fields considered in present normal size machines. 

1. INTRODUCTION 

For 40 years, since J. D. Lawson in 1957 published a paper in the Proceedings of the 
Physical Society by title "Some Criteria for a Power Producing Thermonuclear 
Reactor,"(l) the plasma physics community has been guided in its quest for fusion by 
the directions provided by the 'Lawson aiteria' for energy breakeven conditions. 
These are general criteria, applicable to an idealized situation where a plasma of 
particle density n is brought instantaneously to a temperature T, which is 
maintained for a time TE after which it is allowed to cool to the original 
temperature. The aiteria state that for breakeven, the temperature has to be above 
30 million OK and the product n7, must exceed 1014 cm-3 sec in deuterium-tritium 
reactions. The reaction products are not retained in the plasma of the Lawson 
analysis, and conduction losses are neglected during the plasma burning time. 
These criteria apply to the case of 'scientific breakeven', in which the energy 
supplied to heat the plasma and maintain the bremsstrahlung losses is returned to 
the system, together with the reaction energy, with a recovery efficiency 11 of 1 /3. 
No allowance is made for the fact that the energy used to heat the plasma and 
supply the bremsstrahlung losses must come from a conventional source, and that 
the transfer efficiency is normally much less than 100 percent. Were this 
considered, the Lawson criteria would become even more difficult to satisfy. Mills(2) 
has generalized the 'scientific breakeven' conditions by considering several energy 
recovery efficiencies q, from 2.5 to 60 percent. Some discussion regarding terms in 
the energy balance equation of Lawson has been carried out in Refs. 3 and 4. Several 
generalizations of the Lawson criteria are also reported in the standard textbook 



literature on fusion energy(5-"1. 

In the present work, the complete system is examined in detail, i.e., source of 
energy and plasma sink, and various energy transfer efficiencies are considered 
from the first to the second, as well as from the second to the first. The energy from 
the source is deposited in a pulse, and the plasma experiences a cycle of temperature 
values. The analysis departs from the conventional one, in that heat conduction 
losses are introduced from heat transfer theory, rather than through the 3nkT/z, 
term, thus limiting the role played by the energy confinement time in the ignition 
conditions. In order to ease the inclusion in the energy balance equation of 
conduction losses, the geometry considered here is the spherical one. More 
specifically, it is the spherical pinch geometry(l2-14). However, the analysis can be 
extended to other geometries, including the toroidal, when the appropriate heat 
conduction loss term is used. The particular case of ignition of a magnetically 
confined plasma is considered here. Elsewhere, the most general criteria for 
breakeven or ignition have been provided.(ls) A most important result is found 
that ignition does not depend on particle density. This means that any attempt to 
have more fusion energy by increasing the fuel (particle) density leads to greater 
conduction losses. This can be offset by an increase of the magnelic-field that 
confines the plasma. However, it is found that, for a plasma of normal radius, i.e., 
a centimeter or so, the strength of the magnetic field required for ignition is well 
above any of the present machines. Also, it is found that the shape of the plasma 
temperature excursion has a bearing on the ignition conditions. 

2. ANALYSIS 

Fig. 1 illustrates the system under consideration. Energy E from a source is released 
in a pulse of power W(t). A fraction Ei of the energy (Ei = aE where a is the efficiency 
of energy transfer from the source to the sink) is deposited in a spherical chamber 
containing a plasma core and an ionized gas blanket, while the rest (1 - a)E is 

t 

dissipated in the components of the energy transfer system. The energy a J W(t) dt 
0 
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Fig. 1 - Energy flow system. 



that reaches the chamber at time t is used to heat the plasma core, and to provide for 
the radiation and conduction losses. In the absence of other energy inputs, the 
energy balance equation is: 

t t 

a l W  ( t )d t  = J [ H ( ~ )  + ~ ( t )  + ~ ( t ) ] d t  (1 
0 0 

where H(t) is the rate of heat energy change in the plasma core, and R(t) and C(t) are 
the rate of energy loss by radiation and heat conduction, respectively. Other losses, 
such as synchrotron or inverse compton radiation production, are not included 
here. 

A 50 percent mixture of deuterium and tritium is considered here as making up the 
plasma and surrounding gas. The fusion nuclear reaction taking place in the 
plasma core is: 

D + T = He4 (3.5 MeV) + n (14.1 MeV) (2) 
where 3.5 MeV is the energy carried by the a particle He4, and 14.1 MeV is the 
energy carried by the neutron n. 

At the end of the life to of the plasma core, when this has cooled down and returned 
to the original temperature, an amount of energy E, is available from the liquid 
blanket for return to the source. A fraction E, of this energy (E, = bEo, where b is the 
efficiency of energy transfer from the liquid blanket to thesource) is the amount 
that actually reaches the source. Breakeven or ignition require that E, = E. The aim 
of this study is to find the conditions for ignition of a magnetically confined plasma 
as a function of the strength of the confining magnetic field, given the temperature 
T, particle density n, and radius r of the plasma, and the coefficients a and b of 
transfer efficiency from the energy source to the sink, and viceversa, respectively, 
when conduction losses are introduced from heat transfer theory rather than 
through the 3nkT/zE term. 

The rate of energy released in the form of a particles and neutrons will be 
designated as P,(t) and P,(t), respectively. Only the a particles may remain in the 
plasma and further heat it, whereas the neutrons will escape and be absorbed by the 
liquid blanket. The case considered here is the one in which the a particles are 
retained (ignition). 

gc Particles Are Retained 

Only the neutrons escape, and the energy available at time t from the liquid blanket 
for return to the source is: 

t 

E* ( t )  = I [pn(t)  + R ('1 + '(t)] dt (3) 
0 



Ignition requires that, at the end of the time b: 

Since the a particles remain in the plasma core, this is a new energy source, and the 
energy balance equation becomes: 

t t t 

a I W  ( t )d t+  J p a ( t ) d t  = J [ H ( t ) + R ( t ) + C ( t ) ]  dt 
0 0 0 

which can be written as: 
t t 

a J w  ( t )d t  = J [ H ( ~ ) +  R ( t ) + c ( t ) - p a  ( t ) ]  dt 
0 0 

From Eqs. (4) and (1B) one gets: 

1 '0 

-J[H(~)+R(~)+c(~)-~~(t)]dt=bJ[~~(t)+~(t)+~(t)]dt a (5) 
0 0 

which transforms into: 

to to 1 1 
J ~ ( t ) d t = a b J ( r ~ ( t ) + ~ P ~ ( t ) + ( l - z ) [ R ( t ) + ~ ( t ) ] } d t  (6) 
0 0 

At the end of to, the plasma core returns to the original temperature. No heat 
energy remains and therefore: 

to 

J H (t) dt = 0 (7) 
0 

Hence: 

If eq. (9) is satisfied, breakeven is achieved. 

The first three terms P,(t), P,(t) and R(t) in the integral (9) are functions of plasma 
temperature, particle density and plasma volume. Specifically, for a 50% D-T 
mixture, one has(l6): 



where P, and Pa are expressed in watts, T in kV, Vp in cm3, and n in cm-3. 

The rate of heat conduction loss C(t) from the plasma core to the liquid blanket can 
be derived from heat transfer theorycln as follows. The rate of heat transfer in a 
hollow sphere with surface temperature T1 at rl, and T2 at r2 where rl, r2 are the 
radii of the inner and outer surfaces, respectively, is given by: 

where K is the thermal conductivity of the material that makes up the hollow 
sphere. 

In the present case, heat transfer takes place from the plasma core of radius rl and 
temperature TI to the liquid blanket of radius 1-2 and temperature T2. The medium 
through which heat propagates before reaching the liquid blanket is the ionized gas 
blanket made up of deuterium and tritium, and the first wall, usually made up of 
stainless steel(l8). The latter easily transfers heat, so that only the thermal 
conductivity of the former needs to be considered. Eq. (13) expresses the rate of heat 

4 3 transfer from the entire volume of the plasma core V P = 7  x rl.  The rate of heat 

transfer per unit volume is obtained by dividing (13) by Vp. Since the temperature 

TI of the plasma core is much larger than the temperature T2 of the liquid blanket, 
one has T1 - T2 = TI = T. Likewise, since r2 >> rl = r, one has r2 - rl = r2. Eq. (13) thus 
leads to: 

and the heat conduction loss rate appearing in (9) is given explicitly by: 

where C(r, T, Vp) is expressed in watts, when T is expressed in kV, r in cm, and K in 
W/cm kV. 

Eq. (15) shows that the rate of heat conduction loss from the plasma core of radius r 
and temperature T to the liquid blanket is a function of the thermal conductivity K 



of the ionized gas blanket. In the following, we shall provide the formula for the 
thermal conductivity of a plasma immersed in a magnetic field. 

Plasma Blanket with Magnetic Field. The thermal conductivity is given by(19): 

cal 

sec OK cm 
where Ai is the atomic weight of the positive ions of density ni = n/2 (in cm-31, B is 
the magnetic field (in gauss), and Z = 1 for deuterium and tritium. Taking Ai = 2.5 
(averaged for a 50% D-T plasma), and in A - 20 for a hot plasma, expression (16) 
transforms into: 

The thermal conductivity in this case decreases with temperature T and magnetic 
field B, and increases with particle density n. Heat losses are now controlled mainly 
by the plasma layer with the lowest conductivity. This is the one in contact with the 
hot plasma core, which can therefore be identified as having the same parameters as 
the core itself, i.e., the same n and T. 

Introducing (17) into (15), one gets: 

The interesting aspect of this expression is that n2 appears in all terms of the 
integrand as common factor, which therefore cancels out. This makes the integrand 
independent of particle density, and ignition is not a function of n. This is an 
important result. The integral (1 9) becomes: 

If one now inserts the previous expressions for P,(t), P,(t), R(t), and C(t) from (101, 
(ll), (12), and (18), respectively, into (9)) and divide by Vp, one gets an explicit 
expression for ignition: 

t o  

8.31 
2'06x10-24 ] 

ab 

- 19.94 - 
2 

2 -- T (01 13 

KT j t )  3 e  
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In (19') it has been assumed that, during the short time to, only the temperature T of 
the plasma core changes, whereas n and r remain constant. In other words, it is 
assumed that the plasma is confined by some means during time b, and therefore 
the plasma radius r and particle number density n do not change. The formulation 
of the conditions for ignition, however, as expressed by (19'), has general validity 
and remains the same if n and r also are a function of time. It can have even more 
validity if n is also a function of space within the plasma core volume. In this case, 
clearly the integration has to be performed over space and over time. 

The three functions that appear in the integrals (19') are positive functions, the 
latter two being subtracted from the first. The integral can therefore have positive 
or negative values. If the integrand, which is the sum of these three functions, is 
negative, the integral will also be negative. Likewise, if it is positive, the integral 
will be positive. One can examine the trend of the integrand by calculating and 
plotting it as a function of one of its variables. assuming prescribed values for the 
others. In this way, one is able to find for which value-of the variable the function 
(integrand) from negative becomes positive, i.e., assumes a value equal to zero. For 
this value, or for any positive value of the integrand, ignition can be achieved. The 
geometry to which these results apply is the spherical geometry. For other 
geometries, such as the toroidal, the proper expressions for the conduction loss 
must replace the one used here. 

In the following figures, plots of the integrand of (19)' are provided as a function of 
the magnetic field B. Two parameters are kept constant, namely the coefficient b = 
0.3, and the radius of the plasma r = 1 cm. Each figure refers to a specific plasma 
temperature, ranging from 5 to 20 kV, and contains three plots for a = 0.05,0.10, and 
0.15, respectively. 

Fig. 2 shows that, for T = 5 kV, the integrand is always negative, no matter what the 
value of the magnetic field up to 2 x 105 gauss = 20 Tesla. This means that ignition 
cannot be obtained for the plasma parameters considered in the figure. If one 
increases the temperature to T = 10 kV, Fig. 3 shows that still ignition cannot be 
obtained. Only when one pushes the temperature to T = 15 kV (Fig. 41, and to T = 20 
kV (Fig. 5), then ignition can be obtained at a value of B around 1.5 x 105 gauss (15 
Tesla), and B = 1.2 x 105 gauss (12 Tesla), respectively. These are very high values of 



the magnetic field, probably higher than any of those contemplated for future 
machines. 

Fig. 2 - Plot of the integrand of Eq. (19') as a function of confining magnetic field. Ignition cannot be 
achieved with a confining field of up to 2 x 105 gauss (20 Tesla) for a plasma temperature T = 5 kV. 

Fig. 3 - Plot of the integrand of Eq. (19') as a function of confining magnetic field. Ignition cannot be 
achieved with a confining field of up to 2 x 105 gauss (20 Tesla) for a plasma temperature T = 10 kV. 



Fig. 4 - Plot of the integrand of Eq. (19') as a function of confining magnetic field. Ignition can now be 
achieved with a confining field of 1.5 x 105 gauss (15 Tesla) for a plasma temperature T = 15 kV. 

Fig. 5 - Plot of the integrand of Eq. (19') as a function of confining magnetic field. Ignition can now be 
achieved with a confining field of 1.2 x 105 gauss (12 Tesla) for a plasma temperature T = 20 kV. 



The ignition condition derived here as a function of the confining magnetic field is 
certainly necessary, but by no means sufficient. The reason is that, in a pulsed 
reactor, the plasma core is subjected to a temperature cycle during the pulse. When 
the temperature is above threshold for breakeven, there is a gain of energy, and a 
loss of energy when it is below threshold. The plasma temperature excursion must 
therefore be shaped in such a way that the energy gained during the time when the 
temperature is above threshold compensates for the energy lost when it is below 
this value. 
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