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INTRODUCTION 

Models that simulate the transport and behaviour of radionuclides in the environment are 
used extensively in the nuclear industry for safety and licensing purposes. They are needed 
to calculate derived release limits for new and operating facilities, to estimate consequences 
following hypothetical accidents and to help manage a real emergency. But predictions 
generated for these purposes are essentially meaningless unless they are accompanied by a 
quantitative estimate of the confidence that can be placed in them. For example, in an 
emergency where there has been an accidental release of radioactivity to the atmosphere, 
decisions based on a validated model with small uncertainties would likely be very different 
from those based on an untested model, or on one with large uncertainties. 

This paper begins with a discussion of some general methods for establishing the credibility 
of model predictions. The focus will be on environmental transport models but the 
principles apply to models of all kinds. Experience in international model intercomparison 
programs such as BIOMOVS (Biospheric Model Validation Study (I)), VAMP (Validation 
of Model Predictions (2)) and BIOMOVS II (Phase 11 of BIOMOVS (3)) suggests that, 
although modelers know what they should do in the area of validation and uncertainty, they 
do not always do it. Establishing the credibility of a model is not a trivial task. It involves 
a number of tasks including face validation, verification, experimental validation and 
sensitivity and uncertainty analyses (4). Each of these tasks is inherently subjective in 
nature and must be addressed carefblly if meaninghl results are to be obtained. Each will 
be discussed in turn below. The work currently underway in the Canadian nuclear 
industry to validate safety assessment codes is using many of these tools. 

The remainder of the paper will present quantitative results relating to the credibility of 
environmental transport models. Model formulation, choice of parameter values and the 
influence of the user will all be discussed as sources of uncertainty in predictions. The 
magnitude of uncertainties that must be expected in various applications of the models will 
be presented. The examples used throughout the paper are drawn largely from recent 
work carried out in BIOMOVS and VAMP. 



FACE VALIDATION 

A model possesses face validity if it and its parameter values are accepted by experts as 
being reasonable in the light of current scientific knowledge and practice. (This definition 
and others to follow are working definitions for use in this paper and are not offered as 
universal.) To demonstrate face validity, it is necessary to evaluate the assumptions made 
in developing the model, the processes included in it and how they are formulated 
mathematically. It must be shown that each of these components is treated appropriately, 
taking into account the purpose of the model and prevailing levels of understanding. This 
can be achieved in a number of ways. Initial construction of the model can be based upon 
scenario analysis, in which the features, events and processes that should be included are 
identified through a formal, structured procedure (5). The model can be shown to be 
consistent with ideas in the recent literature and with approaches taken by other groups 
working on the same types of problems. Its formulation and predictions can be compared 
with those of similar models through participation in international programs such as 
BIOMOVS and VAMP. Finally, it can be subjected to peer review through publication in 
the open literature. A model that performs well in each of these evaluation procedures can 
claim the credibility that attaches to scientific consensus. 

VERIFICATION 

Verification is the process of demonstrating that the equations representing the conceptual 
model are correctly coded and solved in the computer program. A verified code is not 
necessarily a good representation of reality, but is one that is working as its designer 
intended it to work. There are many ways to veri@ a computer code: 

Use a structured approach to code development, from task specification through code 
design to the coding itself Use object-oriented programming techniques and modular 
structure in the coding. 

Use computer-aided software engineering to help design, generate, maintain and 
document codes (6). Use computer-aided tools such as unit checks to enhance quality 
assurance. 

Conduct code walkthroughs, examining each line in turn for errors. 

Compare the predictions of the code against known solutions and against the 
predictions of other codes. 

Ensure that the people involved in the development of the code are suitably trained. 
Use independent people in the verification phase, and challenge them to find errors. 

Thoroughly document all aspects of code development, changes, testing and use. 



SENSITIVITY ANALYSIS 

Sensitivity analysis quantifies the change in model output due to changes in the values of 
the input parameters, and ranks the parameters to which the model is most sensitive. It can 
increase understanding of a model by revealing the relationship between its parameters and 
its predictions, and by providing the opportunity to examine its behaviour under a variety 
of conditions. Confidence in the model is increased if it responds to changes in parameter 
values as expected on an intuitive basis and if good data are readily available for the most 
sensitive parameters. Sensitivity analysis can also aid in setting priorities for future 
development of the model. Work can focus on the sensitive processes and parameters, 
allowing improvements to be achieved with a minimum of resources and effort. 

The results of a sensitivity analysis can depend very strongly on the model endpoint. For 
example, Table 1 shows the sensitivity of the hnction Z = e ~ ~ ( - ~ ~ / 2 o ~ ) / o , ,  to which air 
concentrations are proportional in the Gaussian plume model of atmospheric dispersion. 
Here H is the release height and oz is a measure of the vertical spread of the plume at a 
given downwind distance. Close to the release point, the lower edge of the plume just 
reaches the ground and a small change in o, produces a very large change in Z as the 
exponential term increases rapidly. In contrast, at a downwind distance of 750 m, Z goes 
through a maximum and changes in 4 have little influence on its magnitude. Therefore o, 
must be very precisely known in order to predict ground-level concentrations close to the 
source, but can be quite uncertain at greater downwind distances and still produce a good 
level of accuracy in the predicted concentration. 

Table 1 
Sensitivity of the Function Z = ~ X ~ ( - H ~ / ~ C J ~ ) / G ,  to a 50% Increase in oZ 

for H = 50 m and Neutral Atmospheric Stability 

Downwind Distance (m) Change in Z 

a factor of 34 
10% 

EXPERIMENTAL VALIDATION 

Validation is the quantitative testing of model performance by comparing predictions with 
independent observations. The model should be tested only for the conditions in which it is 
meant to apply. The testing should be done at intermediate points in the calculations, as 
well as at the final endpoints, to check for the possibility of compensatory errors. 



The process of comparing predictions and observations can be done either graphically or 
statistically (7). Graphical analysis is recommended in all validation exercises, as it 
provides a quick visual picture of the relationship between predictions and observations, 
especially if error bars are included. It is particularly usefbl when time series are involved, 
as it reveals at a glance whether the dynamics of the model and the data are the same. In 
addition, graphical analysis is usually fairly reliable in distinguishing between the 
performance of different models. But even if no formal statistical tests are applied, 
comparisons between predictions and observations should be quantitative. Statements 
such as "the predictions agree well with observations" are essentially meaningless and 
should be replaced, for example, with an estimate of the fraction of the results that are 
within a factor of two of the observations. 

Statistical tests are required for drawing specific conclusions about the agreement between 
predictions and observations. But care must be taken in applying such procedures since 
statistical analysis is not well developed for the type of output produced by environmental 
transport models. Model predictions are usually not independent, normally distributed or 
drawn randomly &om populations, and so violate the basic assumptions of many statistical 
tests. However, statistics can be usefbl for answering certain types of questions. For 
example, analysis of variance (8) can establish if the predictions of one model agree with 
those of another. Cluster analysis and principal component analysis (9) can help to identify 
similarities between models, and to determine if those similarities can be ascribed to 
specific model features. Measures such as normalized root mean square error (10) and 
mean fiactional error (1 1) can show if one model performs better than another in 
reproducing a given data set, although they leave unanswered the question of whether the 
level of agreement between predictions and observations is adequate. When statistical tests 
are used, care must be taken to distinguish practical sigruficance from statistical 
significance. Very small differences between two sets of predictions can cause one to fail a 
test in the statistical sense and the other to pass when the two sets are essentially identical 
on a practical level. Moreover, conclusions about model performance should never be 
drawn fiom statistical tests alone but should be based on the use of all tools available for 
establishing model credibility. 

In any validation study, attention should be given to the observations as well as to the 
predictions. The two must be consistent for the comparison to be meaningful. 
Furthermore, where they disagree, the fault should not automatically be assumed to lie with 
the predictions. Experimental observations can be in error for many reasons, including the 
collection, preparation and analysis of the environmental samples. Cases arose in both 
BIOMOVS (12) and BIOMOVS 11 (13) in which the reasons for differences between 
predictions and observations could be traced to errors in the observations. 



UNCERTAINTY ANALYSIS 

Uncertainty analysis provides a quantitative statement of the range of model predictions 
that results fkom uncertainties in model structure or parameter values (14,15,16). The 
importance of uncertainties in establishing model credibility cannot be overstated. They 
make validation possible by providing a measure against which to decide if differences 
between predictions and observations are sigruficant. The range of applicability of a model 
can be defined as the domain in which uncertainties are acceptably small. Finally, the 
magnitude of the uncertainties often affects the decisions that are based on the predictions 
of the model. 

Some of these concepts can be made more concrete by considering the comparison of 
hypothetical predictions and observations shown in Figure 1. Most radioecologists would 

Figure 1 
Hypothetical Observations and Predictions of Radionuclide Concentration 

as a Function of Time 



likely be impressed with the evident level of agreement demonstrated in this figure. But 
there is in fact no agreement in the normal sense of the word since at no point in time are 
the predictions and observation numerically equal. Apparently, agreement in the context of 
validation allows for some degree of difference, which is quantified by the uncertainty 
estimates. The impression of good agreement in Figure 1 would be warranted if the data 
pertained to the loss of activity over time fkom an environmental compartment such as the 
soil following a deposition event. Past experience with situations of this sort suggests that 
the expected uncertainties would be much larger than the differences in the figure, implying 
that the model is performing well. But if instead the data describe the radioactive decay of 
a particular nuclide, the level of agreement is not so impressive. The uncertainties in this 
case should be less than the differences between predictions and observations shown in the 
figure, and the model would be judged inadequate. Thus two diametrically opposite 
interpretations of Figure 1 can be made depending on the uncertainties assigned to the 
predictions. Conclusions regarding model performance cannot be drawn without taking 
uncertainties into account. 

Uncertainty in model predictions can arise from many sources, the most common being 
parameter values, model conceptualization and formulation, and user interpretation. These 
sources will be discussed in turn below. Uncertainty analysis can help to idenw the main 
sources of uncertainty and so point the way to priorities for h r e  research. 

Parameter Uncertainty 

The parameter values used in a given model may be uncertain for a number of reasons. 
Observations on which to base the values may be scarce, and invariably will contain 
measurement errors. Data derived fiom laboratory experiments may be quite different 
fkom values that are appropriate in the field. Empirical parameters may be used outside of 
their range of applicability. Spatial and temporal averaging may not be consistent with 
model objectives. Lumped parameters that represent the net effect of several processes 
may not describe those processes well. 

The propagation of parameter uncertainties through a model is usually done by Monte 
Carlo analysis. Each variable parameter is first assigned a probability density function 
(PDF) that reflects the degree of belief that the parameter will take on given values within 
its range. The model is then run a large number of times, with a different set of parameter 
values chosen each time by random or stratified sampling from the PDFs. Uncertainties in 
the predictions are determined from the distribution of outputs. These techniques are well 
known and will not be discussed further here, except to point out that specification of the 
PDFs is the critical step. Very rarely are there enough data to derive the PDFs objectively 
and it is usually necessary to resort to subjective assignments. In this case it is vital that the 
distributions be set by consensus. Formal expert elicitation, which is expensive and tirne- 
consuming, is normally not required, but informal input from a number of experts will help 
to avoid the bias that a single individual inevitably brings to the process. To illustrate this, 
Figure 2 shows the distributions chosen by seven different modelers, each working alone, 



for the ?c soil solidAiquid partition coefficient (Kd) in the BIOMOVS B2 scenario 
(Imgation with contaminated groundwater (17)). Although each participant had access to 
the same database, their best-estimate values extended over four orders of magnitude and 
the uncertainty ranges varied from one to four orders of magnitude. Had the participants 
been able to meet and discuss this parameter, it is likely they would have agree on 
intermediate values, and reduced the substantial variability that the original range induced 
in the predicted *TC concentrations in soil. 

Figure 2 
Kd Values and Uncertainty Ranges for *TC Adopted by Participants in the 

BIOMOVS B2 Scenario (Irrigation with Contaminated Groundwater) 

Model Uncertainty 

The simplifications inherent in all models lead to uncertainties in their predictions. These 
may arise because it is not clear what processes are operating in the system, or because the 
processes are too poorly understood or too complex to be modeled adequately. Most 
models cannot account for the large natural spatial and temporal variability found in the 
environment. 



It is generally difficult to quantify the uncertainty in a conceptual model or in its 
mathematical representation. The exception is the case in which more than one process 
may be responsible for a given consequence. For example, it is not clear whether the 
formation of organically-bound tritium (OBT) in plants at night is due to residual 
photosynthetic processes or to other chemical reactions. In such a case both processes are 
coded into the model and a new binary parameter PI, defined that implements one or the 
other depending upon its value. The model is run a large number of times as in an ordinary 
uncertainty analysis, with values of Pb chosen to reflect the degree of belief that one 
process or the other causes the OBT formation. In this way the uncertainty in the 
conceptual model is quantified in the analysis. 

The magnitude of model uncertainty can sometimes be quite large. Figure 3 shows results 
from the Model Complexity Working Group of BIOMOVS 11 (18). Participants were 
asked to calculate the flux of '"CS to groundwater as a hnction of time following 
contamination of the surface soil layer. This was done using models of varying complexity, 

Figure 3 
Predictions and Uncertainty Estimates of the 13'cs Flux to Groundwater by Models of 

Different Complexity (Model Complexity Working Group of BIOMOVS 11) 

I 10 yean 50 yean 
, 200 years 1 



ranging &om simple box models (3BOX, SCK) to sophisticated numerical solutions of the 
advection-diffusion equation (AnaAD, IC). The box 'models tended to predict much larger 
fluxes than the advection-diffusion models because the assumption of instantaneous mixing 
within a box resulted in artificially-enhanced diffusion and faster downward migration of 
the radioactivity through the soil profile. Although this is a well-known deficiency in box 
models, none of the participants took it into account when they calculated the uncertainty 
in the fluxes, leading to estimates that were unrealistically small. The gap between the 
error bars associated with the box and advection-diffusion codes at 200 years suggests that 
model uncertainty in this case amounted to several orders of magnitude. 

User Interpretation 

If two different modelers were asked to perform a given assessment using the same code, it 
is likely that their predictions would be substantially different. In carrying out the task, 
each modeler must make many decisions, most of which are highly subjective. He or she 
must first interpret the scenario and determine how best to match the given information, 
which is often incomplete and inconsistent, to the input requirements of the code. The 
code itself must be understood and its various options selected in such a way that the 
output provides a suitable answer to the assessment question. Finally, values for all of the 
parameters required by the model must be chosen to best reflect the situation being 
simulated. There are usually no "right7' responses in any of these tasks and the different 
choices made by different modelers contribute to the uncertainty in the model predictions. 

A Working Group was set up in BIOMOVS I1 to quantify the effect of the user on 
uncertainty for assessments dealing with radionuclide transfer through terrestrial food 
chains (19). The same three codes and the same three scenario descriptions were 
distributed to ten different modelers, each of whom worked independently to obtain the 
specified outputs. Results produced using the CHERPAC code (20) are shown in Figure 4 
for the Bremen scenario, which involved the transfer of 1 3 7 ~ s  to milk from plants and soil 
contaminated by deposition of airborne activity following the Chernobyl accident. The 
predictions all show roughly the same dynamics as the observations, suggesting that the 
modelers were able to implement the code as desired, but the spread in the magnitude of 
the concentrations at any time is almost a factor of 100. These results were typical of other 
codes, scenarios and endpoints, and were obtained by modelers who were experienced in 
these sorts of assessments. Choice of parameter values was identified as the primary cause 
of the different predictions, although the assumptions made in deriving input data fiom the 
scenario descriptions was also a major contributor. The Working Group recommended 
that all important assessments be carried out by at least two different groups or by teams of 
experts. In this way the magnitude of the uncertainty due to user interpretation can be 
estimated and, through consensus, reduced. 
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Short-Range Atmospheric Dispersion Models 

Atmospheric dispersion is a well-studied and reasonably well-understood subject. Models 
for short-range dispersion have high face validity and have been tested against experimental 
data in many studies. However, dispersion is a stochastic phenomenon and there is no 
general theoretical relationship connecting turbulence to diffusion. Concentrations 
measured at the same location under ostensibly identical meteorological conditions can 
v q  by up to a factor of two. Current models are unable to account for this, and so their 
predictions contain an inherent uncertainty of this order of magnitude. To this must be 
added uncertainties due to parameter values. Figure 5 shows the results of work in 
progress on the parametric uncertainty of a Gaussian Plume model. The end point of the 
calculations was the total thyroid dose, summed over inhalation, cloudshine and 
groundshine, to an adult located 1000 m downwind of an elevated source of "'I of source 
strength 1 014 Bq. The stack gas temperature was 70°C above ambient, and the release was 
subject to the wake effects of a nearby building. Rain was falling at the rate of 3 mm/h 
during the release. Probability density functions for the variable parameters were set using 
a process of informal expert elicitation and uncertainties were determined fkom 100 model 
runs in which parameter values were selected using Latin Hypercube Sampling. Figure 5 
shows that, for unstable conditions in the presence of building wakes, the 95% confidence 
interval on the total dose spans almost an order of magnitude. The interval is much larger 
for stable conditions with no building wake effects. 

Figure 5 
Uncertainties in the Predictions of a Gaussian Plume Dispersion Model for Different 

Release and Meteorological Conditions 



The key to understanding these results is to note that the lower edge of the plume just 
reaches the ground at the downwind distance considered. Concentrations and doses at 
ground level are therefore very sensitive to the effective release height and the vertical 
dispersion parameter (Table 1). The sensitivity is greatest for stable conditions, when the 
plume is still largely elevated, and the uncertainties are correspondingly large. They are 
smaller when the plume is influenced by the building wake, which mixes the plume more 
effectively down to the ground and reduces the sensitivity of the concentrations. This is an 
example of a case in which increased model complexity leads to lower uncertainties. 

Terrestrial Food Chain Models 

There is general agreement on which processes govern radionuclide transfer through 
terrestrial food chains. But many of these processes are poorly understood and there is 
often no consensus on how best they should be simulated. The credibility of model 
predictions depends very much on the radionuclide under consideration. The accident at 
the Chemobyl Nuclear Power Plant generated a large amount of field data that has 
subsequently been used for model testing, but most of the information is restricted to '"I 
and "'cs. An example of the performance of current terrestrial food chain models is 
shown in Figure 6,  which is based on calculations done in the VAMP Multiple Pathways 
Working Group (2 1). The figure displays the confidence intervals of six different models 

Figure 6 
Confidence Intervals on Predicted Ingestion Doses to Inhabitants of Finland 
Following the Chemobyl Accident (Scenario S fiom the VAMP Program). 

The Horizontal Lines Mark the 95% Confidence Interval on the Doses 
Estimated from Measured Body Burdens. 



for the effective dose to the inhabitants of Finland due to ingestion of food supplies 
contaminated by Chemobyl fallout. The intervals typically extend over an order of 
magnitude, but within this accuracy agree with the doses estimated on the basis of 
measured body burdens. Note, however, that the performance of the models may have 
been enhanced by lessons learned in a similar test scenario undertaken previously in VAMP 
using data from Central Bohemia. The predictions would be less credible if the models 
were applied to a different radionuclide or to a different type of accident. 

Models to Assess Nuclear Fuel Waste Disposal 

Modeling radionuclide migration in the context of nuclear fuel waste disposal presents 
challenges not found in more traditional environmental transport applications. The source 
of the activity is in the geosphere and its upward migration depends on processes not 
normally modeled when the release occurs directly to the biosphere. Very long time fiames 
must be considered, during which the biosphere and human lifestyles might undergo 
profound and essentially unpredictable changes. The testing of model predictions against 
field data is possible only for the first very small fiaction of the total simulation time. There 
exists little information on many of the radionuclides involved. For these reasons, the 
credibility of waste management assessments depends primarily on face validation, and 
uncertainties in the predictions are large. Figure 7 shows results from the B6 Scenario of 
BIOMOVS, which involved the prediction of 12'1 concentrations in soil, plants and animal 
products due to the upward migration of activity from a contaminated water table (22). 

Figure 7 
Best Estimate and Uncertainty Ranges for ?I Concentrations in Soil at Steady State for 

the BIOMOVS B6 Scenario (Groundwater Discharge to a 
Terrestrial Area) 



Participants were faced with the problem of migration across the geosphere-biosphere 
boundary, and their best-estimate predictions varied by almost three orders of magnitude. 
Coddence intervals for a given model were typically two to three orders of magnitude, 
and the range fiom the lowest confidence limit to the largest across all models was about 
five orders. The variability in results can be reduced through a more precise scenario 
description and discussion among participants (23), but the uncertainties in predictions of 
this sort will remain large. 

PRECEPTS FOR ESTABLISHING MODEL CREDIBILITY 

The key concepts to emerge fiom the above discussion are summarized below as a guide to 
good scientific practice in determining the level of confidence to be placed in the 
predictions of environmental transport models and in reducing their uncertainties: 

choose approaches to establishing model credibility that are consistent with the purpose 
of the assessment, the quality of the data and the capabilities of the model 

take advantage of all opportunities to test model predictions against observations 

supplement quantitative statistical procedures with graphical analysis, qualitative 
evaluation, sensitivity and uncertainty analyses and verification tests 

include uncertainty estimates with all model predictions, and include all sources of 
uncertainty in the estimates 

reduce the subjectivity in the process by gaining consensus fiom teams of experts on all 
major decisions required in the analysis 

REFERENCES 

(1) HAEGG, C. and JOHANSSON, G., "BIOMOVS: An International Model Validation 
Study", Proceedings, Workshop on Reliability of Radioactive Transfer Models, 
Athens, Elsevier Applied Science Publishers, Barking, U.K., 1987. 

(2) IAEq "Validation of Environmental Model Predictions (VAMP): A Programme for 
Testing and Improving Biospheric Models Using Data fiom the Chemobyl Fallout7', 
STWUBl932, International Atomic Energy Agency, Vienna, Austria, 1993. 

(3) BIOMOVS 11, "An Overview of the BIOMOVS I1 Study and its Findings", BIOMOVS 
I1 Technical Report No. 17, Swedish Radiation Protection Institute, Stockholm, 
Sweden, 1996. 



(4) KIRCHNER, T .B . , "Establishing Model Credibility Involves more than Validation", 
Proceedings, BIOMOVS Symposium on the Validity of Environmental Transport 
Models, Swedish Radiation Protection Institute, Stockholm, Sweden, 3 7 1-3 78, 1990. 

(5) VAN DORP, F., "Development of Reference Biospheres Methodology for Radioactive 
Waste Disposal", BIOMOVS II Technical Report No. 6, Swedish Radiation Protection 
Institute, Stockholm, Sweden, 1996. 

(6 )  SHENG, G. and OREN, T.I., "Software Reverse Engineering Tools to Enhance 
Confidence of Scientific Codes", Proceedings, BIOMOVS Symposium on the Validity 
of Environmental Transfer Models, Swedish Radiation Protection Institute, Stockholm, 
Sweden, 275-286, 1990. 

(7) SCOTT, M., "Qualitative and Quantitative Guidelines for the Comparison of 
Environmental Model Predictions", BIOMOVS I1 Technical Report No. 3, Swedish 
Radiation Protection Institute, Stockholm, Sweden, 1995. 

(8) MAXWELL, S .E. and DELANEY, A.D., "Designing Experiments and Analysing 
Data", Wadsworth, 1990. 

(9) EVERITT, B. S. and DUNN, G., "Applied Multivariate Data Analysis", Edward 
Arnold, 1991. 

(10) HANNA, S.R., "Air Quality Model Evaluation and Uncertainty", J. Air Poll. Control 
ASS., 33, 406-412, 1988. 

(1 1) RAO, S.T. and VISALLI, J.R., "On the Comparative Assessment of the Performance 
of Air Quality Models", J. Air Poll. Control Ass., 3 1, 85 1-860, 198 1. 

(12) KOEHLER, H., PETERSON S-R. and HOFFMAN, F.O., "Scenario A4: Multiple 
Model Testing using Chemobyl Fallout Data of 1-13 1 in Forage and Milk and Cs-137 
in Forage, Milk, Beef and Grain", BIOMOVS Technical Report 13, Swedish 
Radiation Protection Institute, Stockholm, Sweden, 199 1. 

(13) BARRY, P. J., DAVIS, P.A. and STRACK, S., "Tritium in the Food Chain: 
Comparison of Predicted and Observed Behaviour", BIOMOVS I .  Technical Report 
No. 13, Swedish Radiation Protection Institute, Stockholm, Sweden, 1996. 

(14) IAEA, "Evaluating the Reliability of Predictions made using Environmental Transfer 
Models", Safety Series No. 100, International Atomic Energy Agency, Vienna, 
Austria, 1989. 

(1 5) BAVERSTAM, U., DAVIS, P.A., GARCIA-OLIVARES, A., HENRICH, E. and 
KOCH, J., "Guidelines for Uncertainty Analysis", BIOMOVS II Technical Report No. 
1, Swedish Radiation Protection Institute, Stockholm, Sweden, 1993. 



(1 6) NCRP, "A Guide for Uncertainty Analysis in Dose and Risk Assessments Related to 
Environmental Contamination", NCRP Commentary No. 14, National Council on 
Radiation Protection and Measurements, Bethesda, MD., 1996. 

(17) GROGAN, H.A., "Scenario B2: Imgation with Contaminated Groundwater", 
BIOMOVS Technical Report 6, Swedish Radiation Protection Institute, 
Stockholm, Sweden, 1989. 

(1 8) ELERT, M., "Effect of Model Complexity on Uncertainty Estimates", BIOMOVS 11 
Technical Report No. 16, Swedish Radiation Protection Institute, Stockholm, Sweden, 
1996. 

(1 9) KTRCHNER, G., "Effect of User Interpretation on Uncertainty Estimates", 
BIOMOVS I1 Technical Report No. 7, Swedish Radiation Protection Institute, 
Stockholm, Sweden, 1996. 

(20) PETERSON, S-R., "Model Description of CHERPAC (Chalk River Environmental 
Research Pathways Analysis Code); Results of Testing with Post-Chernobyl Data 
from Finland", Atomic Energy of Canada Limited Report AECL-11089, Chalk River, 
Ontario, 1 994. 

(2 1) IAEA, "Validation of Models using Chernobyl Fallout Data from Southern Finland - 
Scenario S", TECDOC-904, International Atomic Energy Agency, Vienna, Austria, 
1996 

(22) JONES, C.H., "Scenario B6: Transport of Radionuclides to Root-Zone Soil fiom 
Contaminated Groundwater", BIOMOVS Technical Report 9, Swedish Radiation 
Protection Institute, Stockholm, Sweden, 1990. 

(23) KLOS, R., "Biosphere Modelling for Dose Assessments of Radioactive Waste 
Repositories: Final Report of the Complementary Studies Working Group", 
BIOMOVS I1 Technical Report No. 12, Swedish Radiation Protection Institute, 
Stockholm, Sweden, 1996. 




