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ABSTRACT 

Present circular pressure-tube ballooning models in most fuel channel codes assume that the 
pressure tube remains circular during ballooning. This model provides adequate predictions of 
pressure-tube ballooning behaviour when the pressure tube (PT) and the calandria tube (CT) are 
concentric and when a small (<10O0C) top-to-bottom circumferential temperature gradient is 
present on the pressure tube. However, nonconcentric ballooning is expected to occur under 
certain postulated CANDU@ (CANada Deuterium Uranium) accident conditions. This circular 
geometry assumption prevents the model from accurately predicting nonuniform pressure-tube 
straining and local PT/CT contact when the pressure tube is subjected to a large circumferential 
temperature gradient and consequently deforms in a noncircular pattern. This paper describes an 
improved model that predicts noncircular pressure-tube deformation. Use of this model (once 
fully validated) will reduce uncertainties in the prediction of pressure-tube ballooning during a 
postulated loss-of-coolant accident (LOCA) in a CANDU reactor. 

The noncircular deformation model considers a ring or cross-section of a pressure tube with unit 
axial length to calculate deformation in the radial and circumferential directions. The model keeps 
track of the thinning of the pressure-tube wall as well as the shape deviation from a reference 
circle. Such deviation is expressed in a cosine Fourier series for the lateral symmetry case. The 
coefficients of the series for the first m terms are calculated by solving a set of algebraic equations 
at each time step. The model also takes into account the effects of pressure-tube sag or bow on 
ballooning, using an input value of the offset distance between the centre of the calandria tube and 
the initial centre of the pressure tube for determining the position radius of the pressure tube. 

One significant improvement realized in using the noncircular deformation model is a more 
accurate prediction in maximum pressure-tube strain and thus the likelihood of pressure-tube 
failure. Of 44 sets of comparisons, the agreement between the calculated and measured maximum 
pressure-tube strain has increased from 75% using the circular model to 95% using the 
noncircular model. The results show that the noncircular model is able to predict pressure-tube 
failure, local PT/CT contact, circumferential spread of the contact, and full circumferential 
contact. The work described in this paper was funded by the CANDU Owners Group (COG). 

cANDu" is a registered trademark of Atomic Energy of Canada Limited (AECL). 



1. INTRODUCTION 

One of the postulated accident events in the licensing and safety assessment of CANDU reactors 
is a large-break LOCA. During such an event, coolant in the fuel channels downstream of a break 
can become stagnated. The coolant may boil off, causing the upper portion of the fuel bundles 
and pressure tube to become exposed to superheated steam while the lower portion remains in 
liquid. The temperature of the pressure tube will rise and vary circumferentially. If the primary 
heat transport system in the broken loops remains pressurized, the pressure tube may balloon into 
contact with the calandria tube, rejecting heat to the moderator. Whether or not the pressure tube 
ruptures prior to ballooning contact depends on the system pressure and the circumferential 
temperature gradients on the pressure tube [I]. Therefore, it is essential to predict the transient 
circumferential temperature gradients and the resultant nonuniform pressure tube deformation. 

Small top-to-bottom circumferential temperature gradients will result in fairly uniform (and hence 
circular) deformation of the pressure tube. Large top-to-bottom circumferential temperature 
gradients will result in nonuniform (and hence noncircular) deformation of the pressure tube [2,3]. 
A circular pressure-tube ballooning model (GRAD) was developed by Shewfelt et al. [4] using the 
creep rate equations of Zr-2.5 Nb pressure tubes developed from uniaxial tests [5]. This model is 
used in most fuel channel codes such as FACTAR [6] and CATHENA [7] and assumes the 
pressure tube remains circular during ballooning. The circular model requires the pressure-tube 
circumference be divided into sectors. It keeps track of the sector circumferential length and wall 
thickness based on the temperature and stress calculated for each sector. A mean radius of the 
pressure tube is updated at each time step by summing all sector lengths and then dividing by n. 
This approach allows the model to predict nonuniform pressure-tube strain, but prevents the 
model from predicting local PTICT contact because it assumes PTICT contact occurs over the 
entire circumference simultaneously. 

The circular deformation model predicts full circumferential PT/CT contact once the calculated 
total pressure-tube circumferential length reaches the value that is limited by the calandria tube. 
In reality, when the pressure tube is subjected to a large circumferential temperature gradient, it 
deforms in an egg-shaped pattern as observed from full scale pressure-tube ballooning 
experiments [1,2,3]. The hottest area (e.g., at the top) of the pressure tube may deform into 
contact with the calandria tube before the total pressure-tube circumferential length reaches the 
overall limit. When the circular model is applied to such scenarios, overestimations of pressure- 
tube wall thinning at the hottest location results. 

The circular deformation model assumes that there is no change in the curvature of pressure-tube 
circumference regardless of circumferential temperature gradients on the pressure tube. The 
calculated mean radius of the pressure tube is used to estimate the hoop stress of each sector. 
This results in overestimating the hoop stress (hence the hoop strain) at locations where the 
circumferential temperature gradient is large, resulting in a reduction of the local curvature of 
pressure-tube circumference. 

The circular deformation model has been assessed extensively using data from full scale pressure- 
tube ballooning experiments [2,3,8,9]. The model was shown to accurately predict the pressure- 



tube ballooning behaviour when a small top-to-bottom circumferential temperature gradient 
(~100°C) was present on the pressure tube. A majority of calculated results, however, indicated 
that the circular model overestimated maximum pressure-tube strain when a large circumferential 
temperature gradient developed on the pressure tube. 

The previous assessments using experimental data indicate there is a need to remove the circular 
geometry assumption from the pressure-tube ballooning model when large circumferential 
temperature gradients develop on the pressure tube and when the pressure tube sags or bows 
inside its surrounding calandria tube. This paper describes a noncircular Pressure-Tube RING 
(PTRING) deformation model that resulted from modifications to a ring deformation model of 
Shewfelt [lo]. Comparisons of the PTRING results with the experimental results and with the 
circular model results are also reported. The goal of this work is to provide a validated model to 
improve accuracy in the prediction of noncircular pressure-tube ballooning during a postulated 
LOCA. 

2. DESCRIPTION OF THE NONCIRCULAR MODEL 

The pressure tube is assumed to be in an original cylindrical shape. An elemental ring of the tube 
being considered is taken far from the ends and any supports (Figure la) to eliminate axial loading 
effects. The difference, p, between the internal and external pressures on the tube is assumed to 
be uniform over the tube surface, and can be a function of time. At a given time, p is assumed to 
normally act on the mid-surface (between the inner and outer surfaces) of the tube. The pressure 
will result in extension of this mid-surface in the hoop direction. The hoop bending moment on 
the ring, however, is assumed to result in no extension of this mid-surface, i.e., inextensible 
bending deformation as defined by Timoshenko and Gere [I 11. The effect of axial temperature 
variation on creep deformation is assumed to be negligible compared to that of the circumferential 
temperature variation. Thus, the longitudinal bending and twisting moments are neglected. 

Figure l b  shows the polar coordinates on the pressure-tube ring. Any point " P  on the ring can 
be described by a position radius, p, and the central angle, a, where -0 is the vertical symmetric 
line passing the centre of the ring, and p=p(a). The origin of the coordinates @,a) is at the 
centre of the calandria tube (Figure lc). The initial centre of the pressure-tube ring is assumed to 
be on the vertical symmetric line and have an offset, e ,  with respect to the centre of the calandria 
tube. The offset value is positive when the pressure-tube centre is below the calandria-tube 
centre, zero when the two tubes are concentric, and negative when the pressure-tube centre is 
above the calandria-tube centre. The pressure-tube ring can be located using a reference circle 
with a mean radius, R, and the deviations from the mean radius. The centre of the reference circle 
may not be fixed during nonuniform deformation but remains on the vertical symmetric line. The 
reference or central angle, 8, is based on the reference circle. The curvature of the ring is 
described by the radius of curvature, r. Only when the ring is circular is the radius of curvature of 
the ring equal to the position radius, i.e., r=p. 

The ratio of wall thickness, t ,  to the radius of curvature is assumed to be much smaller than unity 
(e.g., t/r<O. 1 [12]). Hence, the shell theorem [13] can be applied to the ring. Only hoop stress, o, 



is considered since the radial and shear stresses are assumed to be negligibly small. Within each 
time step, the effects of creep and pressure loading are considered in two interrelated steps: 

(1) The effect of high-temperature creep with the hoop stress is assumed to cause the 
pressure-tube ring to diametrically deform. A mean radius of the ring is estimated, 
which represents a reference circular shape of the ring at the time considered. This 
step employs the approach similar to that used in the current circular pressure-tube 
deformation model [4]. 

(2) The deviation from the reference circular shape is determined by assuming bending 
deformation caused by changes in hoop bending stiffness due to circumferential 
temperature gradients. This step solves a set of algebraic equations to obtain the 
first m terms of a cosine Fourier series for determining the radial displacement as a 
function of circumferential angle. 

2.1 Determination of the Mean Radius 

The mean radius of the reference circle, R, can be calculated by 

where AT is the current time interval, RI is the mean radius of the ring at T-AT, and ddd't is the 
creep rate. The creep rate, calculated using Shewfelt's creep rate correlations [S], is a function of 
hoop stress, temperature, and time. The hoop stress can be statically determined by o=p rlt. In 
the circular model, o is estimated using the mean radius, R, of the tube. In this noncircular model, 
the linkage of o with the radius of curvature of the ring, r, better represents stress changes with 
changing geometry. Once the creep rate at a circumferential location is calculated, the wall 
thickness of the ring at this location is updated using the assumption of volume conservation that 
is given by t=tl/[l+(ddd~)A~], where tl is the wall thickness at GAT. 

2.2 Determination of Deviation from the Mean Radius 

At a given time, the shape of the ring can be described by the mean radius of the ring, R, and two 
displacements: the radial displacement w(0) and the circumferential displacement v(0). The radial 
displacement w is zero on the mean circle and taken as positive when it is directed away from the 
centre of the ring, and v is positive in the positive 0 direction. Both w and v consist of two 
components due to hoop tension and hoop bending. For a pressure tube ring, hoop tension has a 
small influence on the shape deviation of the ring. Significant deviation from the reference circle 
can develop as a result of hoop bending even though the bending moment may result in a small 
fraction of hoop stress. This is because the bending stiffness of the ring is very small. Therefore, 
the shape deviation of the ring is assumed to be a result of hoop bending only. 

For inextensible deformation of an internally pressurized ring, the relation between the bending 
moment and the radial displacement is given by Timoshenko and Gere [l  11: 



where w" is the second derivative of w with respect to 0, wo is an average radial displacement due 
to hoop tension and high-temperature creep, E* is the Young's modulus for the plane strain case, I 
is the moment of inertia of the cross section of the ring per unit axial length (1=t~/l2), and M is the 
hoop bending moment which is a function of 0 and taken to be positive when it tends to decrease 
the curvature of the ring. The radial displacement wo is assumed to be (R-Ro), where Ro is the 
initial mean radius of the ring. Also, E*= ~ l ( l - v ~ ) ,  where v is the Possion's ratio, 
E=97200-68.3T, and temperature Tis in "C [lo]. 

Using the Young's modulus, equation 2 provides an approximate relationship between the 
curvature change and the bending moment on the pressure tube ring. In consideration of creep 
and deformation history, the bending stress (much smaller than the mean hoop stress) can be 
relaxed as the nonlinear stress-strain relationship exists. This effect was estimated during this 
study and found to have a small impact on the calculation of pressure-tube strain and position 
radius. Therefore, equation 2 is used to model noncircular pressure-tube deformation until first 
PTICT contact occurs. After first contact, this equation is no longer applicable and thus a 
numerical scheme for deformation of the noncontact pressure-tube portion is employed 
(Section 2.4). 

The nonlinear relation between the hoop tension force Nand the shape deviation w can be 
approximated by [l 11 

where p* is a distributed fictitious pressure load acting radially towards the centre of the ring. 
Note that (M/'+W)/R~ represents the change of curvature of the ring. When the curvature change is 
small, N is approximately equal to the membrane force, p R. After the solution of w is found, N is 
updated and then the hoop stress o is calculated by Nlt. 

Since equation 2 can not be solved directly, the energy method is used for a set of algebraic 
equations to be solved for w(0). The total strain energy being considered consists of the strain 
energy due to hoop bending and the strain energy due to hoop tension. The latter is a large 
fraction of the total strain energy. The increment of the mean radius from the initial radius, wo, 
reflects the strain energy due to hoop tension (i.e., the effect of the hoop force N and creep). The 
strain energy due to hoop tension, however, is not affected by the deviation, ~ ( 0 ) ~  of the mean 
radius. Therefore, for determining w(8), the strain energy, Ue, of the elastic bending deformation 
and the external energy, Ee, of the loads are expressed as 



The integration is along the half ring for the lateral symmetric case (ds =R dB, 8 from 0 to n). 
There may be bending moments and tension forces acting at the ends (8=0 and 0=n). Due to 
symmetry, there are no rotation and hoop displacements at the ends. Hence, such end section 
forces make no contribution in equation 5. The radial displacement w(8) and its derivatives are 
assumed to be small compared with the mean radius R and must be a period function of 2n to 
meet a continuous geometry requirement. In general, w(0) can be represented by a trigonometric 
series for thin-walled tube hoop bending problems [lo, 121. For the symmetry case, w(0) in the 
above energy expressions can be described by the cosine Fourier series: 

w(8) = Z w, cos ne 
n=2,3,- 

Equation 6 excludes the constant term because of inextensible bending. The wl cose term is also 
dropped because it just represents a rigid body movement in plane which could be determined by 
a reference condition (Section 2.3) rather than deformation equations. The coefficients of w(8) 
can be determined by minimizing the potential energy [l  11, P. , where Pe=Ue-Ee. This 
minimization takes the form of aPe/aw=O, where k12. Performing the differentiation gives 

The left term of equation 7 has been obtained by differentiating equation 4 while w and w"are 
obtained from equation 6. The integer k in equation 7 corresponds to the result of the 
differentiation with respect to w. The displacement w together with its second derivative w"in 
equation 7 is still expressed by equation 6 with the integer n representing wn in the series. The 
right term of equation 7 is the result of differentiation of equation 5 while p* is treated as the 
outcome of noncircular deformation and, therefore, has no variation with w when the energy 
method is used. Using the relation given in equation 3 and the orthogonality property of 
coske cosne de = 0 for n+k renders (Ee)*=O for n+k and (Ee)*=(~/2)p(l -ply, for n=k. If the 

first rn tenns of the cosine series are sufficient to represent w(8), a set of algebraic equations for 
coefficients wn can be established as 

where, 



There are m- 1 independent equations for m- 1 unknowns, that is, w2 to w,. The diagonal terms of 
A k k  in the coefficient matrix are always positive. For a special case where the bending stiffness, 
E* I, is uniform on the ring, A h  and Bk will all be zero except for Akk. Therefore, only zero 
solutions for w, are obtained, signifying no shape deviation from the mean radius of the ring. This 
expected outcome indicates that the pressure tube ring is ballooning uniformly. If the original 
shape of the ring is circular and with a uniform thickness, the ring will remain circular during 
ballooning. When the pressure tube ring is subjected to a circumferential temperature gradient, 
the bending stiffness varies along the ring and non-zero solutions for wn are obtained. Since the 
total increment of the mean radius (wo=R-Ro) is used on the right side of equation 8, the solutions 
for wn represent the total radial displacements at time T. Also note that, as both terms in A k k  are 
positive, the effect of the tension force or internal pressure tends to reduce the degree of the 
shape deviation. 

2.3 Position Radius 

Any point on the pressure-tube ring can be located by the position radius p(a). At time 7, p(a)  
can be determined using the initial offset distance e between the pressure tube and the calandria 
tube, the current mean radius R, and the current radial displacement 4 8 )  plus the first term 
wl cose that has been excluded in equation 6. The coefficient wl is the vertical distance between 
the centre of the currently calculated reference circle and the centre of the initial ring. If a 
uniform temperature develops on the ring, it balloons uniformly and the centre of the currently 
calculated reference circle coincides with the centre of the initial ring. If a circumferential 
temperature gradient develops on the ring, nonuniform ballooning occurs and the centre of the 
currently calculated reference circle "floats" on the vertical symmetric line. If there is not a large 
cold (temperatures below 500°C) region on the ring where local creep is negligible, the rigid body 
movement relative to the centre of gravity of the ring must be zero. For this scenario, the 
coefficient wl is determined by calculating the vertical distance between the centre of the reference 
circle and the centre of gravity of the ring. If there exists a large cold region on the ring, the 
known displacement of the cold region is used to determine w,. After wl is obtained, the true 
radial displacement w*(0), including the initial offset e, is given by 

The true circumferential displacement v'(0) can be obtained using the approximate relation of 
w*(8)+dv*/d0=0. The position ( p a )  of a point on the ring, relative to the centre of the calandria 
tube, is given by 

a = 0+sin-'(v* I p )  

2.4 A~~roximat ion after First Contact 



Local PTICT contact is indicated by p+t/22Rc, where R is the inner radius of the calandria tube. 
The calandria tube is assumed to undertake no deformation following pressure-tube contact. 
Therefore, the pressure-tube ring in the contact region has no further radial displacement and wall 
thickness reduction. Prior to full circumferential contact, deformation of the noncontact pressure- 
tube portion after first contact is a complex problem. The above equations are no longer 
applicable for the pressure tube that has partially contacted its calandria tube. 

For completeness of this ring deformation model, a simple numerical scheme is adopted to model 
the continued deformation of the noncontact pressure-tube portion after first contact is predicted. 
It assumes there is no further pressure-tube circumferential length increase for the contact region 
and the creep strain increment of a noncontact region during a time step results in an increment in 
the position radius of this noncontact region. This numerical scheme is similar to that used in the 
circular deformation model. This approach approximately models the propagation of contact and 
adequately calculates pressure-tube strain following first contact. 

2.5 Numerical Implementation 

The noncircular pressure-tube deformation model described above has been numerically 
implemented into a stand-alone computer program PTRING. During each time step, the matrix 
equation (equation 8) is directly solved for w,, using Gauss's elimination method. The number of 
terms (order up to m) included in the cosine series (equation 6) is decided so that the error in w(0) 
is less than 1 %. The lower bound failure criterion [4] is used to predict pressure-tube failure due 
to local necking. The upper bound failure criterion [4] is currently not available in PTRING but 
will be added in the future. 

Half of the pressure-tube circumference is divided into sectors. Each sector is further divided into 
subsectors for increasing accuracy in the strain calculation. Figure 2 shows the influence of the 
total number of sectors used on PTRING results under two different test conditions. In general, it 
is recommended that at least 10 sectors be used for a half pressure-tube circumference with each 
sector being divided into 10 subsectors when PTRING is used to model noncircular pressure-tube 
deformation. 

3. COMPARISON WITH THE CIRCULAR MODEL 

A numerical test is used here to compare the PTRING results with the results from the circular 
model GRAD. A pressure tube is internally pressurized at 1 MPa and is initially concentric inside 
a calandria tube. A time-independent, cosine temperature profile expressed as 
T(~)=200+300(l+cos~) is imposed on the pressure tube. Figure 3 shows the pressure-tube 
geometries and wall thicknesses predicted by PTRING and GRAD at two sample times. At 
53.7 s, PTRING predicted PT/CT contact at the top with an egg-shaped geometry for the 
deforming pressure tube. At this time, GRAD predicted a circular geometry for the pressure tube 
with an increase of 8.5% in its outer radius. GRAD predicted full circumferential PT/CT contact 
at 73.8 s, 20.1 s after PTRING predicted first contact at the top of the pressure tube. At this 



time, PTRING did not predict full circumferential contact and the predicted pressure-tube 
geometry remained noncircular. The wall thicknesses on the upper half of the pressure tube 
predicted by PTRING were thicker than those by GRAD. The difference came from two effects. 
The effect of changing pressure-tube curvature was taken into account in the stress calculation in 
PTRING, but not in GRAD. Local PT/CT contact at the top was predicted by PTRING, but 
GRAD could only predict full circumferential contact. Under these test conditions, PTRING is 
believed to provide a more accurate prediction of pressure-tube deformation. 

4. VALIDATION USING PRESSURE-TUBE BALLOONING DATA 

This section describes an assessment of the noncircular pressure-tube deformation model using 
data from full scale pressure-tube ballooning experiments. Measured transient pressure-tube 
temperatures and pressures were input to PTRING. A half pressure-tube circumference was 
unifonnly divided into 18 sectors (with 10 subsectors in each sector). At circumferential locations 
where measured temperatures were not available, linear interpolation was performed to obtain the 
pressure-tube temperatures. 

4.1 Pressure Tube Ballooning without Pressure Tube Offset 

Data from one of the Pressure Tube Circumferential Temperature Distribution Experiments, 
PTAT S-1-4 [I], were used in this study to assess PTRING under conditions of a concentric 
PT/CT geometry and a large circumferential temperature gradient on the pressure tube. The 
horizontal test section consisted of a 2600-mm-long section of autoclaved Zr-2.5 Nb pressure 
tube sealed at one end and concentrically mounted inside a 2300-mrn-long Zr-2 calandria tube. 
Thirty-seven fuel element simulators were arranged to represent a CANDU fuel bundle. The 
heated length was 2300 rnm. Ten thermocouples were installed around the pressure-tube outside 
surface at each of three axial locations. 

At the beginning of the experiment, the pressure tube was filled with water and pressurized to 
4 MPa. Once the temperature of water in the pressure tube was raised to the saturation 
temperature, the experiment started by opening a steam exit valve at one end of the test section, 
allowing water in the pressure tube to boil off. This coolant boil-off resulted in a large 
top-to-bottom circumferential temperature gradient (as high as 464OC) on the pressure tube. 
Figure 4a shows the histories of the measured pressure-tube temperatures at axial location 2. The 
thermocouple traces indicate that the pressure-tube top had an initial contact with the calandria 
tube at 864 s, and that there was no full circumferential contact in the experiment. At 1171 s, the 
test-section pressure was decreased and no further pressure-tube straining occurred thereafter. 

The measured temperature transients were input to PTRING to perform the deformation 
calculation. The noncircular model correctly predicted initial PT/CT contact at the top of 
pressure tube. The predicted contact time was 867.3 s, 3.3 s later than in the experiment. At the 
end of the experiment (1200 s), the calculated total pressure-tube strain (circumferential length 
increment) was 10.0%. The predicted contact area was *73 deg over the top of the calandria 
tube, which agrees with the contact area indicated by the traces of the top four thermocouples 



(Figure 4a). When the circular deformation model in CATHENA MOD-3.51Rev 0 was used, no 
PTICT contact was predicted. The calculated total pressure-tube strain at the end of the 
experiment was 14.7%. 

Figure 4b shows the predicted pressure-tube wall thicknesses at the end of the calculation with the 
post-test measured values. Both the circular and noncircular model results at 1200 s are shown. 
The calculated wall thicknesses using the noncircular model (solid line) follow the measured data 
('A' symbol) closely, indicating PTRING accurately calculated the maximum pressure-tube strain 
at the top and the strain variation around the pressure tube circumference. The calculated 
pressure-tube wall thicknesses using the circular model were within f l0% of the experimental 
data, which was deemed to be within experimental uncertainties. The pressure-tube wall thinning 
at the top was overestimated significantly (by 18%) using the circular model. 

4.2 Ballooning: - of an Initially Offset Pressure Tube 

Data from PTAT test S-5- 1 [2] were used to validate PTRING under conditions where the 
pressure tube was initially offset inside the calandria tube and subjected to a large circumferential 
temperature gradient. In this test, the horizontal test section consisted of a 28 fuel-element- 
simulator bundle. The length of the heated zone was 1800 mm. The bundle was surrounded by a 
2 105-mm-long pressure tube mounted inside a 1780-mm-long calandria tube. The test-section 
pressure was 4 MPa. The pressure tube was offset by 3.6 mm in the calandria tube to simulate a 
sagged pressure tube. The pressure-tube temperatures were monitored at five distinct axial 
locations, with a maximum recorded top-to-bottom circumferential temperature gradient of 
475°C. Local PT/CT contact was observed along the test section. The pressure tube did not fail 
in this experiment. 

The measured pressure-tube temperatures at axial location 1 (225 mm from the closed end) are 
shown in Figure 5a. At 714.3 s, the pressure-tube top had contacted the calandria tube. The 
temperature traces of thermocouples 2 ,3 ,8  and 7 after 714.3 s indicate that contact spread from 
the top to the side of the pressure tube within 10 s. The temperature traces of the thermocouples 
around the bottom half of the pressure tube did not show any contact during the experiment. 

Two calculations were performed using PTRING to show the effects of pressure-tube offset on 
ballooning. In one calculation, the pressure tube offset was neglected and an initial concentric 
PTICT geometry (zero offset) was used. In the other calculation, the experimental pressure-tube 
offset of 3.6 mm was used. The noncircular model predicted initial PTKT contact at 7 13.0 s for 
the concentric case and at 714.7 s for the offset case. Both the predicted times agreed with the 
experimental time of 714.3 s, with the predicted time for the offset case being closer to the 
experimental time. For the channel pressure of 4 MPa in this test, the pressure-tube offset value 
of 3.6 mrn had a minor impact on the predicted initial contact time (causing a 1.73 difference). 
This offset, however, had a much greater impact on the predicted pressure-tube wall thickness 
reduction, as shown in Figure 5b. When the effects of pressure-tube offset were included, the 
noncircular model accurately predicted the minimum pressure-tube wall thickness that occurred 
20 deg from the top of the pressure tube. When the offset effects were not included, the wall 
thickness reduction at this location was underestimated. The predicted contact area by the 



noncircular model with the inclusion of pressure-tube offset effects was k8  1 deg at the top of the 
channel, which agreed with the contact area inferred from the thermocouple traces in Figure 5a. 

The circular model did not account for pressure-tube offset effects and could not predict local 
PTICT contact. Under these test conditions, the circular model predicted neither PTICT contact 
nor pressure-tube rupture. The predicted pressure-tube wall thicknesses, however, were in 
agreement with the measured values as well as with the results predicted by the noncircular model 
with the inclusion of pressure-tube offset effects. 

4.3 Pressure Tube Ballooning at 10 MPa 

Data from a 10-MPa pressure-tube ballooning experiment were used in this study to determine if 
PTRING could predict the observed pressure-tube failure. Temperatures of the pressure tube, 
measured at the mid-plane of the pressure-tube wall, are shown in Figure 6a. As the pressure 
tube was heated, a circumferential temperature gradient of 200°C developed. As a result, the 
pressure tube deformed and ruptured at the top at 898 s, before any PTICT contact occurred. 
Using the measured temperatures. both the circular and noncircular deformation models predicted 
rupture of the pressure tube due to a local break (lower bound criterion on failure with a wall 
defect assumed to be 13 km). The predicted rupture time was 892 s, which was 6 s earlier than 
the experiment. 

4.4 PTIXING Validation Results Summarv 

Presented above are 3 of the 44  sets of measured and calculated results. In this study, forty-four 
sets of data from various full scale fuel channel experiments were used, covering internal 
pressures from 1 to 10 MPa and top-to-bottom circumferential temperature gradients as high as 
690°C. Using measured pressure-tube circumferential temperature distributions, PTRING 
correctly predicted PTICT contact that initially occurred at the hottest location around the 
pressure tube. Figure 7a shows that, of 22 cases where initial contact occurred in the 
experiments, the predicted initial contact times for 14 cases were within +lo s of the experimental 
times. For the remaining 8 cases, PTRING did not predict local PTICT contact. An assessment 
was performed to determine how much longer PTRING would need to predict PTICT contact. 
Less than 10 s more was needed for PTRING to predict PT/CT contact for each of the 8 cases 
when the measured pressure-tube temperatures were extrapolated beyond the time of contact. 
Figure 7a also shows that the predicted pressure-tube failure and full PTICT contact times were 
within rt8 s of the experimental times. 

The calculated pressure-tube wall thicknesses that fall within 320% of the measured data were 
considered to be within the experimental uncertainties based on an uncertainty analysis performed 
in this study. Using this criterion, the agreement between the calculated and post-test measured 
minimum pressure-tube wall thicknesses increased from 75% using the circular model (Figure 7c) 
to 95% using the noncircular model (Figure 7b). Two of these calculated results were largely 
influenced by thermocouple failure during ballooning in the experiments and thus underestimated 
pressure-tube wall thinning significantly. 



The noncircular model was also shown to be capable of predicting the circumferential spread of 
PT/CT contact following initial contact. A majority of the calculated PT/CT contact areas were 
within k30% of the experimentally inferred areas at the end of each experiment. The ability of 
PTRING to predict PTICT contact areas during pressure-tube ballooning can be utilized to 
improve the estimation of the heat load to the moderator following PT/CT contact. 

5. CONCLUSIONS 

A noncircular deformation model for Zr-2.5 Nb pressure tubes has been analytically developed 
and numerically implemented into a stand-alone computer program PTRING. Forty-four sets of 
data from various full scale fuel channel experiments have been used to validate PTRING and 
evaluate improvements in modelling pressure-tube behaviour by comparing the noncircular model 
results with the circular model results. One of the significant improvements in using the 
noncircular deformation model is a more accurate prediction in maximum pressure-tube strain and 
thus the likelihood of pressure-tube failure when large circumferential temperature gradients 
develop on the pressure tube and/or when the pressure tube is initially offset inside the calandria 
tube. The results have also showed the ability of PTRING to predict pressure-tube failure, local 
PT/CT contact, circumferential spread of the contact, and full circumferential contact. Further 
validation of this noncircular pressure-tube deformation model using experimental data with 
channel pressures between 1.5 and 3.5 MPa and high pressures above 6 MPa is recommended. 
Use of this model, once fully validated, will reduce uncertainties in the prediction of pressure-tube 
ballooning during a postulated LOCA. 
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FIGURE 1 : Elemental Ring of the Pressure Tube (a), Two Coordinates on the Ring (b) and the Initial Ring 
Position in the Calandria Tube (c) 
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FIGURE 2: Influence of Total Number of Sectors on PTRING Results in Two Numerical Tests (Each Sector 
was Divided into 10 Subsectors in PTRING) 
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FIGURE 3: Comparison Between the Circular and Noncircular Models on Predicted Pressure-Tube Geometry and 
Circumferential Wall Thickness Distribution at Two Different Times (T=200+300(l+cos~): p=l MPa) 
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FIGURE 4: Measured Pressure-Tube Outer-Surface Temperatures (a) and Measured and Predicted Pressure-Tube 
Wall Thicknesses (b) at Axial Location 2 of PTAT Test S- 1-4 
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FIGURE 5: Measured Pressure-Tube Outer-Surface Temperatures (a) and Measured and Prehcted Pressure-Tube 
Wall Thicknesses (b) at Axial Location 1 of PTAT Test S-5-1 
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RE 7: Comparisons of Calculated Time (a) and Pressure-Tube Wall Thickness (b) using the Noncircular Model, 
and Calculated Pressure-Tube Wall Thickness using the Circular Model (c) with Experimental Results 
(Two data points were removed from (b) and (c) due to effects of heater failure in experiments) 






