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INTRODUCTION 

A C language program has been developed at the Point Lepreau Nuclear Generating Station which 
emulates the actions of an SSCI 125 computer's instruction set and also emulates the actions of those 
input and output devices (including a RAMTEIC display system) which belong to the plant control 
computer of the nuclear power plant's full scope training simulator. This enables the same DCC 
software to run on both the $20 million dollar training simulator and an equivalent desktop simulator 
whose hardware cost is now $1 6,000 or less. It facilitates making additional copies of the $20 million 
dollar training simulator for less than 0.1% of the cost per copy. 

When this emulation program is run on a 266 MHz DEC single CPU Alpha computer, it simulates the 
running of the training simulator plant control DCC (digital control computer) at approximately the 
rate of real time: either faster or slightly slower depending on the compiler options employed and 
depending on the choice of the modeled machine cycle speed of the SSCI. Using the standard machine 
cycle speed of 660 nanoseconds, using the emulator fully optimized, and using plant process modeling 
without optimization the speed is 90% as fast as real time - this is the normal use situation for 
simulator modelers who were the originally intended users of the emulator. If the modeled SSCI 
machine cycle speed is slowed down to 792 nanoseconds (making use of spare capacity on the real 
SSCI to reduce the workload of emulation), and all objects are compiled as optimized, then it takes 
only about 20 minutes of clock time to simulate over 30 minutes of modeling time. This mode of 
silnulation may be useful for so~nebody who is not doing emulator or modeling code development. 
This could include preparing lesson plans for the training simulator, developing or evaluating plant 
operating procedures, or trying out revised DCC software. 

The design of the emulator is described highlighting aspects of its design which distinguish it from 
previous DCC emulators known to the authors (2),(3). There is a separate companion paper (1) 
describing the Point Lepreau Desktop Simulator in its entirety. 

H This emulator knows the elapsed time of each SSCI instruction, so it can be conveniently run 
either in a real time simulation context or in the context of non-real time variable step length 
plant process simulations run on a shared access mainframe computer in company with non- 
simulation users. This is significant since most nuclear power plant simulation studies are not 
done in real time. 

W This emulator employs the virtual memory mapping and 4 state memory protection scheme of 
the SSCI 125 which is more computationally expensive than previous Varian emulators. Yet 
good overall running efficiency is achieved for the emulator because of design and coding 
techniques that are described. 



MOTIVATION 

In the past it has been difficult to study the power plant dynamics of CANDU nuclear plants using the 
plant control computer software. Using a real nuclear power plant for experimentation poses obvious 
risks and expense. Alternatively one can: 

1.  obtain full scope training simulator access where the training simulator has a duplicate of the plant 
control computer. This approach is very useful because of the scope of the training simulator modeling 
and the fidelity obtained by running the real plant control programs. However, this is no solution if one 
does not have a full scope training simulator or one lacks sufficient access to such a facility. Full scope 
training simulators have very high cost and very high utilization for training. 

2. One can build or obtain duplicate control computer hardware and interfacing which is also 
expensive - one goes some fraction of the way in the direction of a duplicate training simulator with 
some fraction of those large costs. Or 

3. one can replace the old assembly language software of the plant control computer with new 
programs which run on cheap modern hardware. These software emulation programs are supposed to 
behave like the programs that run on the plant control computer. Not only is the initial cost of this 
approach high, but there becomes an ongoing necessity to modify and check out the software 
emulation programs when the assembly language programs in the plant continue to be modified. And 
there are limits as to how much of the plant control computer one might pay to translate. 

A fourth approach is hardware emulation. Instead of imitating the programs that run on the plant 
conwol computers, one writes a program which imitates the plant control computer hardware itself. 
The hardware emulation program is written in a language that allows the emulation program to be 
moved easily from one computer to another, which allows the programs of the plant control computer 
to run on any computer where the hardware emulation program is moved. 

The annunciation messages from the plant control computer during plant transients are utterly vital for 
many purposes, and yet these messages are produced by many different plant control and annunciation 
programs. So it is only with hardware emulation that it is practical to achieve the same extent of 
annunciation information as in the real power plant. The cost of doing so through software emulation 
is impractical, particularly because annunciation is one of the most rapidly changing and heavily 
maintained areas of plant computer s o h a r e .  

Hardware emulation is much simpler than software emulation. Point Lepreau has over 12 linear feet of 
assembly language program listings for the plant control computers, so translating and maintaining 
even a fraction of these programs into a portable higher level language is a big undertaking. By 
comparison there are mere hundreds of distinct machine instructions which require to be handled by a 
hardware emulator. In addition, hardware emulators require much less maintenance than software 
emulators because the programs of the plant control computer get changed much more frequently than 
the hardware is changed. 

One of the main barriers to hardware emulation has traditionally been the cost of computing power. 
Now that massive computing power is available relatively inexpensively, the practicality of hardware 
emulation has increased considerably, at least when there is a way to overcome the second great 
problem of hardware emulation - adequately knowing the behaviour of the machine being emulated. 

The SSCI 125 is a clone of the Varian V70 series of minicomputers which were very successful in the 
1970's. The Varian V70's series were chosen for control of the early CANDU nuclear power plants 
and for that purpose Atomic Energy of Canada developed the early CANDU executive DCC (plant 
Digital Control Computer) software and various application programs for plant control, annunciation 
and data logging. 



When the Point Lepreau plant was constructed from 1975 to 1982 it was provided with duplicate 
Varian V73 control computers designated DCCX and DCCY. Similar DCC's were provided to 
Wolsung 1 in Korea, Gentilly 2 in Quebec, and the Embalse plant in Argentina. At least a dozen of 
Ontario Hydro's nuclear units have similar DCC' s. 

The plant control and executive software for all these plants is written in Varian assembler. The 
software was extraordinarily costly to develop as it required nuclear plant transients to help in 
debugging it. So this software has been retained over the years despite the ongoing march of s o h ~ a r e  
technology that has made assembly language programming an historical curiosity in most contexts. 
The assembly language programs that have been painstakingly refined over the years at the Point 
Lepreau plant are beautiful, and elegantly laid out - not second class software by any proper definition. 

When full scope training simulators were built for these power plants, a faithful replication of the plant 
control computer functions usually meant including a duplicate of the DCC in the simulator with the 
DCC executive software being highly modified to provide the added simulator functions not required 
or appropriate for the nuclear power plant. The executive software of the simulator runs application 
programs effectively identical to the application programs running in the power plant. The same 
application program images that run in the Lepreau plant control computers also run on the Lepreau 
simulator, although on some simulators the code is more highly modified because the simulator 
executive interface to the application programs differs from the interface seen by the same application 
programs running in the plant. 

When the Point Lepreau training simulator was built fiom 1988 to 1991 it was no longer possible to 
buy Varian hardware, but the SSCI company built and sold "clones" of the V70's, an early model of 
which was the SSCI 125. An SSCI 125 was purchased for the Point Lepreau training simulator by 
CAE, the simulator manufacturer. The Lepreau training simulator has only one control computer 
designated DCCS which is set up to imitate DCCX in the plant. 

The V70's only had an address space of 32k of 16 bit words, which was fine for their time. The code 
which controls the Lepreau plant is written for [his address space, making extensive use of an overlay 
area where code is loaded in from the multi-megabyte bulk rnelnory unit (BMU). The SSCI 125 has a 
larger address space consisting of 16 memory maps each of which can address 32K 16 bit words. The 
DCC executive software for the Lepreau simulator was even more highly modified than is usual as 
compared to the executive sofhvare of the corresponding plant DCC's In the case of the Lepreau 
simulator, the job of writing this executive software was more of a challenge than usual because the 
simulator and the power plant were based on hvo different kinds of computers - one with memory 
mapping and one without, and the memory protection schemes of the two kinds of computer are also 
different. 

More recently built CANDU power plants in Romania and Korea are using the SSCI family of Varian 
clones to control both their plants and simulators. The training simulator DCC to be built for the new 
Chinese CANDU plant remains to be seen. The Chinese plant is to be controlled by SSCI's. 

A possible use of the SSCI emulator would be to displace DCC hardware in a new CANDU simulator. 
I t  would be easy to build simulator specific functions such as the ability to freeze and restore directly 
into the emulator itself - this is especially obvious when trying to simulate the failure of DCC hardware 
components. By building these abilities into the emulator, one could then run almost the same DCC 
executive software on the training simulator as in the power plant. It would largely remove the need to 
create and maintain a separate DCC executive for the training simulator. 



KEEPING TRACK OF EMULATED TIME 

The Basic Approach to Time 

The Point Lepreau SSCI and its peripheral devices is modeled as a single sequential process. This 
achieves adequate accuracy for purposes of overall plant simulation. This is possible because the 
SSCI is a single processor machine and because of the limited intelligence of the peripherals employed 
with it. If there were substantial distributed ''brains" one would need to model events occurring in 
multiple time streams and suffer the overhead of coordinating these time streams - thankhlly that has 
not been necessary. 

The design objective for simple and reliable time simulation in the Point Lepreau emulator is to try to 
code the emulator using only two types of time information: the time delay before some fbture 
hardware event occurs; or the time it takes for an SSCI machine instruction to execute. Each of these 
two types of time information is kept in a place that is simple to find and administer as follows. 

1. All information on the delays before future hardware events is contained in a single chronologically 
ordered event queue, where an event is a simple data structure. Each hardware event knows how many 
nanoseconds it comes after the event before it in the queue. When it is time for an event to occur, it is 
made to happen by calling the function pointed to from that particular event data structure. 

2. Each SSCI machine instruction Iaows how long it taltes to execute. All information on the timing 
behaviour of that instruction is contained within the function that emulates that instruction. For 
example, an ADD instruction with direct addressing has a duration of 1320 nanoseconds in the 
emulator. With indirect addressing the same instruction is modeled to take 1320 nanoseconds plus 660 
nanoseconds for each level of indirect. 

Time is advanced in the model simply by having each SSCI instruction decrement the time to the 
occurrence of the next (i.e. first) hardware event in the event queue. Thus a direct addressing ADD 
instruction decrements the time to the next hardware event by 1320 nanoseconds. 

Keeping time information in very few places was felt to be good simulation software design, and trying 
to rely as much as possible on relative time rather than absolute time was felt also to be desirable for 
simulation software. 

This design objective was achieved with only one exception. The exception was necessary because 
countdown registers' keep on counting down after they time out and eventually get read after they have 
timed out. Thus one has to keep track of this kind of event for indefinitely long periods after it occurs. 
This was done by creating an absolute timer and using certain fields in the data structure of the 
countdown registers for necessary bookkeeping. The use of the absolute timer was limited to the 
countdown registers to respect the administrative objectives of the original design. The timer is 
maintained by a recurring 1 millisecond event on the hardware event queue: 1 millisecond (i.e. the 
time for perhaps 1000 machine instructions ) is the timing resolution of the countdown registers. 

The basis for estimating the execution times of our individual SSCI instructions is to take the 
corresponding published titnes for the Varian V77 machine - which is only approximately true of the 
SSCI. There are no published times for the SSCI itself. Published times are approximate because in 
some situations the execution speed depends on the operands, sometimes in a manner more complex 
than any reasonable person would want to model. 

' Countdown registers are external timers to the SSCl which are wired into different lines of the 
external interrupt system. The CANDU DCC executive software talks to these different timers to 
manage different classes of interrupts which are required to exhibit timed behaviour. 



Reasonable guesses or experimentally determined times were used for instructions unique to the SSCI. 
Such a rough approach to instruction timing has no adverse implications to fidelity of simulation, for 
reasons explained below. 

Plant Control Insensitive to Computer Clock Speed (within limits!) 

In a well designed real time control application such as a CANDU DCC, the execution times of 
individual control computer instructions does not impact on plant control dynamics. 

All plant control actions occur at fixed points in time which depend only upon devices external to the 
SSCI. If there is a turbine trip in the plant, that has an immediate impact on the timing of control 
actions because of a turbine trip interrupt, but the impact arises fiom outside the SSCI. When the heat 
transport control program runs every 2 seconds on the SSCI, that arises due to an interrupt originating 
from the slow function countdown register external to the SSCI - the timing of the interrupt is 
independent of the speed of the execution of SSCI instructions. Because all plant control actions occur 
only at points in time fixed externally from the SSCI, it does not matter how fast or slow is the 
execution of the SSCI instructions, so long as the SSCI is fast enough to squeeze in all the work it has 
to do according to the externally driven schedule2. 

If the plant control computer is not fast enough to achieve the externally driven schedule, the problem 
is that the machine has run out of "spare time". But in practice, it is important that there be substantial 
"spare time" on the plant control computers - or else the computer is not assured of being able to 
handle a plant transient or be as responsive to operator input as was the design intent. During "spare 
time" the DCC executive software is executing at its lowest priority level, cycling around the 
"background executive loop" where various deferrable tasks are done. 

The practical consequence of all of this is that the instruction execution times of the emulator do not 
have to be highly accurate for plant simulation purposes, so long as the times are not overestimated 
badly enough to remove all the spare time that would otherwise be available. If the time is 
underestimated that it takes to execute individual SSCI instructions, the consequence to modeling 
fidelity may only be that the emulator spends a higher fraction of its time spinning around the 
background executive loop, and a lower fraction of its time executing plant control programs such as 
heat transport control which are only run once every 2 seconds, regardless of how fast the computer is 
and regardless of how many times it might be possible to run that program in 2 seconds given more 
computing power. 

The consequence of underestimating the time it takes to execute the SSCI instructions is primarily' to 
waste the computing power of the computer on which the emulator is running - the emulator will take 
more time on the computer hosting the emulator to simulate 1 second of time of the computer being 
emulated. 

The times for the program schedules are data used by the DCC executive software - these data affect 
the times that the executive software communicate to the various external timers. But the actions of the 
timers depend on the fixed data values, not on the speed of execution of the DCC software itself. 

The executive software has some built in timins tests (such as for RAMTEK IOBIC DMA data 
transfers) based on counting the number of cycles around a timing loop and requiring an interrupt 
before a maximum acceptable count is reached. Shortening up the time too severely in the emulator for 
the particular machine instructions in these timing loops can therefore cause the executive to leave 
insufficient time for certain data transfers, unless the executive is patched (not done!). 



The foregoing arguments have been validated with our emulator by running a reactor trip event using 
different instruction set timings, as indicated by the following test cases: 

1. the instruction timings were the standard timings of the emulator, 

2. the time of a basic machine cycle was increased by 20% in the emulator, 

3. the machine cycle time was lowered to 95% its normal value, and 

4. the normal execution times of some arithmetic instructions were ,increased by a factor of 10. 

In all cases, the plant transient simulation results were "the same" because there was always spare time 
for the executive software to just spin around the background executive loop. The case where the 
machine cycle time was increased 20% from 660 nanoseconds to 792 nanoseconds was accompanied 
by a consequent increase in the speed of emulation, as less computing power for emulation gets wasted 
in the executive background loop. 

More details on validation of the emulator are given reference (1). 

Comparison to Time Simulation on Earlier Emulators 

All earlier DCC emulators. of which the authors are aware, had no internal sense of time within the 
emulator itself. These programs were mostly written in Intel 8088 assembler for purposes of limited 
testing of DCC software, given that Intel based PC's were easier to access than Varian V70's. Plant 
simulation was not the original objective, so there was no need to model the passage of time. Later 
when these emulators were adapted to work in a simulation context, it was easiest not to modify the 
emulator logic, but instead to provide the emulator with a sense of time by using computer hardware 
timers. 

Regardless of the details of how hardware timers are used to give a "time unknowing" emulator a 
sense of time, it tends to be done using a fixed ratio between time as measured by the hardware timer 
and time as seen in the modeled process. There is a fixed relationship between time as seen on the wall 
clock and time in the modeled process. Having a fixed ratio relationship like this, whether it is 1 to 1, 
or 1 to 2 ,or 2 to 1 makes it difficult to run such an emulator in a time shared context. However, time 
sharing is the norm on large mainframe computers used in many design and safety analysis 
simulations. Time sharing is a problem because generally no user is guaranteed, or wants to be limited 
to, a fixed fraction of computer CPU capacity. 

Another potential problem with "time unknowing" emulators is that the timing resolution available 
from many hardware timers can be crude compared to what one would like. In contrast, there is no 
ultimate limit to the accuracy of timing possible using the approach employed by the NB Power 
emulator - it is only a matter of how much one cares. 

The Point Lepreau emulator has a built in sense of time in the software itself, so there is no 
dependence on any timing hardware of the machine on which the Lepreau emulator is run. Therefore 
this emulator can be run as easily in a timesharing context as in the context of a dedicated use 
computer. In addition, the Lepreau emulator does not have to waste computer capacity in non-real time 
applications because it does not need the spare time required by a "time unknowing" emulator which 
must at times wait for its next hardware clock tick before the emulator can advance time. In a real time 
application the two different types of emulator would be comparable because both have to wait to be 
synchronized with a hardware timer. 



As previously explained, wasted capacity in the Lepreau emulator can arise from the amount of time 
spent simulating time in the background executive loop (this is a source of wasted computer capacity 
in any kind of emulator because it imitates waste in the real world). The waste can be minimized in the 
Lepreau emulator by experimentally increasing the instruction execution times until just before fidelity 
of plant dynamics is affected. However, it is better to have enough of a spare time cushion so you can 
be sure plant dynamics are accurate in your simulation. The same kind of fidelity problems can arise in 
"time unknowing" emulators that are too aggressive in trying to achieve fast simulation results. 

MEMORY MODEL REQUIREMENTS 

Description of SSC/ Ma~ping 

Throughout this document octal numbers are always preceded by a 0, and decimal numbers are not. 
The system utilities of Varian V70's and their SSCI clones are octal oriented. 

The SSCI 125 has physical pages 0 to 0377 where each page is 0 1000 words (of 16 bits). The memory 
limit of the Lepreau machine is 5 12k words, which is a range of 0 to 0 1777 physical pages limited by 
the physical memory installed, not the architecture. 

The physical pages of the SSCI 125 architecture numbers 0 to 0377. A physical address is composed 
of 3 octal digits to give the offset within the page, and this offset is preceded by the three digit octal 
page number. Thus physical address 0265 125 is offset 0 125 words into physical page 0265. 

There are 020 maps within the SSCI. Each map consists of 0100 pointers to physical pages of normal 
RAM memory. The pointers themselves are stored apart from normal memory. Each pointer can have 
any value from 0 to 0377. Each map therefore defines a complete virtual memory space of 0 100 pages 
of 01000 words: that is virtual addresses 0 to 077777 (the address range of the old Varian V70 
machines). With most computers and operating systems, the virtual memory space is larger than the 
physical memory space, but with the SSCI, the opposite is true! 

The SSCI has a program status word (PSW) register which contains important information indicating 
the current utilization of the different possible maps. 

The MAPAC (map active) bit of the PSW is bit 4. If this bit is not set, then no mapping is used and 
any address referenced in the software has identically the same physical address. In other words one 
can only address the first 0 to 077777 physical words of memory if MAPAC is 0. Also there are no 
memory protect violation interrupts unless MAPAC is 1. 

The USRMD (user mode) bit of the PSW is bit 5. If this bit is not set, then only map 0 is used and 
there can be no memory protect violation resulting from the use of privileged instructions ( I/O 
instructions). When USRMD is set, execution of any privileged instruction causes a memory protect 
violation. 

The KEY portion of the PSW is bits 0 to 3. Its value points to which of the 16 maps used when both 
MAPAC and USRMD bits are set. When USRMD is not set the key bits are not used, except by some 
SSCl special instructions that never existed on a Varian computer. 

As an example of address interpretation consider software address 04356 1. 

If MAPAC is 0, then the physical address is also 04356 1 - that is offset 056 1 words into physical 
page 043. 



If MAPAC is 1,  then mapping is as described in the rest of this example. 

If USRMD is 0, then map 0 is used . Pointer 043 in map 0 is examined in the hardware and it 
points to physical page 03 1 1 (for example) which means the physical address is 03 1 1 56 1 
corresponding to virtual address 04356 1.  

If USRMD is 1, then the map used is determined from KEY. If KEY has a value of 0 10 (for 
example). Pointer 043 in map 0 10 points to physical page 02 1 (for example). So the physical 
address is 02 1561 corresponding to virtual address 04356 1 in this case. 

Prosrammina o f  Mappinq and Profecfion 

The problem is to be able to translate virtual addresses in the range 0 to 077777 into a correct physical 
address in the range 0 to 0377777. 

The approach to solving all programming problems in the Lepreau emulator has been to look for 
speed, and to be prepared to use abundant cheap modern memory to facilitate that objective. 

There are 02 1 cases to deal with: using one of the maps 0 to 0 17 or using no mapping at all. For each 
of these cases one constructs an array of 0100000 elements whose cells numbered 0 to 077777. Each 
cell contains the physical address for the virtual address agreeing with the cell number. Thus cell 2 
contains the physical address for a virtual address of 2. One switches between using different sets of 
0100000 cells according to the current values of the MAPAC, USRMD and KEY bits of the PSW. 

The SSCI 125 sofhvare at Point Lepreau only uses 5 maps, and advantage was taken of this in the 
implementation of the emulator to reduce the appetite for memory for all those extra cells. 

The case for no mapping is set up as a pseudo map at compile time: so there are maps 0 to 017 (really 
only 0 to 4 in our special case) and a pseudo-map. Every virtual address in the pseudo-map has the 
same physical address. The cells for all the other maps are set up based on the execution of SSCI 
instructions used in the DCC executive software to set up the mapping on the real hardware. So if a 
particular map sets a particular virtual page to point to a particular physical page, fully 0 1000 cells 
have to be set up as a result in the emulator. So the execution time in the emulator of the instructions to 
set up the maps is slow. These instructions are only used by the DCC INIT program, so no problem 
arises from this slowness for the Lepreau simulator application. 

These 02 1 sets of indexing cells are arranged into a single contiguous array memmap , and a pointer 
called umapbase can be computed so that in every case 

physical address = merninap [umapbase + virtual address] 

ujtzapbase points to a particular subset of 01 00000 cells in the memnzap array which ensures the 
mapping used is the correct mapping for the current PSW. Every time one of the first 5 bits of the 
PSW changes, the value for umapbnse is set accordingly. This is a frequent occurrence, but quick and 
simple. 
Memory protection is organized in exact correspondence to mapping: specifying the current map and 
current virtual page is necessary and sufficient to define the memory protection characteristics of the 
current virtual address. So one can look up the memory protection characteristics of the current 
address in a manner exactly analogous to looking up a physical address for a virtual address. 

So 
memory protect status = memprot [umapbase + virtual address] 



where memprot is an array set up primarily as a result of the SSCI instructions that set the memory 
protection in each virtual page. A portion of the memprot array is set up a compile time: there is full 
access throughout the pseudo map where mapping is disabled (i.e. physical address equals virtual 
address). 

Note than when one updates the value of urnupbase. it simultaneously serves the needs of memory 
mapping and protection. 

The slowness in initially setting up the maps and the extensive memory used in the emulator for a11 the 
pointer cells is more than paid for by the resultant speed in handling both mapping and memory 
protection in normal running. It becomes fast and simple to look up the physical address or protection 
of any virtual address. 

The most surprising problem in memory addressing encountered in the development of the emulator 
was a reliance on an undocumented address wrap around characteristic of the original Varian hardware 
that has been duplicated in the SSCI. When indexing operations are performed on virtual addresses it 
is possible for the resultant address to exceed the maximum virtual address of 077777. What the 
hardware does is "and off' bit 15 so that an address like 0102347 becomes 02347. The original feeling 
was that anyone who used this feature of the hardware deserved to "hit the wall", and should welcome 
doing so. The emulator was initially written nor to "and off' bit 15. However, significant pieces of the 
DCC software written in the 1970's used this feature of the hardware and so it was necessary to more 
properly imitate the hardware. Thankfully the adjustment to the emulator was easy. 

Memory Protect Violations 

There are 2 bits which define the protection status of any virtual page in the SSCI: according to how . 

there bits are set the page is either 
- unassigned (usually there is no physical memory for such a page), 
- read only, 
- read only operand (more restrictive than read only - must not be an executable instruction), or 
- full access. 

There are three bits in the PSW which define what kind of memory protect violations can occur: the 
JMPERR bit (bit 1 1) and the MP bits (bits 9 and 10). The JMPERR bit is set according to whether the 
violation occurred during execution of a jump type instruction, and the MP bits denote either 

- privileged instruction violation, 
- instruction fetch error, 
- write error, or 
- unassigned memory error. 

Privileged instruction violations occur as a result of executing "privileged instructions" (a subset of the 
I/O instructions) when the USRMD bit is set in the PSW. 

Instruction fetch errors occur when the SSCI attempts to execute an instruction stored in read only 
operand memory. 

Write errors occur when an attempt is made to modify a word in memory which has either read only or 
read only operand protection. 

Unassigned memory errors occur when an attempt is made to use unassigned memory. 



When any of these errors occur, information which is particular to the violation is recorded by the 
SSCI hardware in addresses 062 and 022. Since the Lepreau SSCI executive uses jump and mark 
emulation for the memory protect violation handler, the other key piece of information is the return 
link address recorded by the hardware at the address pointed to by the contents of address 02 1 in 
memory. 

Although the definitions of the different types of errors seem simple, the memory protect behaviour of 
the SSCI is complex and quirky. Typically there are multiple words of memory to examine when an 
instruction is executed, and if there is a violation on one word, there may be a violation on more than 
one. So there is a question of what happens in the case of multiple violations. 

The most common memory protect violation that occurs is intentional in the executive software. The 
typical call for an executive service from a CANDU DCC application program involves setting up the 
B register with a specific lcey value and then creating an intentional memory protect violation by doing 
a jump and mark instruction into protected memory. On the SSCI the jump and mark is indirect 
through a memory word that is read only operand (a violation) to a mark word that is also read only 
operand (a violation) and a jump target that is also read only operand (a violation). The result of all 
this is not an instruction fetch error for the instruction at the jump target and not a write error for the 
mark word, but rather an unassigned memory error in the MP bits of the PSW and the JMPERR bit is 
also set. 

The memory protect violation handler of the executive software checks to see if the B register contains 
the required key, and the call is allowed to proceed. Otherwise the violation causes a program failure 
or restart of the DCC, depending on the program causing the violation. 

As another example of quirkiness, the SSCI can look down a chain of indirect addresses "through" 
unassigned memory that physically exists to return information about what is at the end of the chain of 
indirects. 

The Point Lepreau emulator does not try to cope with the full complexity of the memory protect 
behaviour. 

There was no attempt to incorporate the information recorded in memory address 022 upon the 
occurrence of a memory protect violation: the use of this information is only for debugging, and the 
emulator being a software device has inherently greater debugging flexibility than the hardware ever 
could. 

It was felt unnecessary to deal in the emulator with the ability of the SSCI to look through unassigned 
memory that physically exists. So as a matter of policy the Lepreau executive SSCI software ensures 
that the only unassigned memory is memory which does not physically exist. This is not seen as a 
practical constraint. 

In general, there was no attempt made to deal with correct emulation of the simultaneous presence of 
multiple memory protect violations involving the same SSCI instruction, except for those specific 
situations which arise intentionally in the SSCI (and Varian) CANDU executive software. Single case 
violations are handled accurately according to extensive testing that was done, but even that testing 
was not 100% exhaustive. 

In the end, there is reliance on the CANDU DCC executive software to cause a computer restart or 
program failure on any unintended memory protect violation. And the emulator is assured of handling 
the intentional violations accurately, at least those cases in Lepreau DCC executive software. 



SCOPE AND PRIORITY OF INTERRUPT EMULATION 

The only internal interrupts that are emulated are the real time clock interrupt and memory protect 
violation interrupts. Parity errors, power down, power up, virtual console, and UART interrupts are 
not emulated. 

Restart is emulated (as caused by a watchdog timeout), although it is not an interrupt in the normal 
sense. When it happens it takes priority over ANYTHING else. 

The full external interrupt system is emulated. This includes 3 SSCI PIM's and 4 CAE PIM's 
providing effectively 52 distinct priority levels of external interrupts. 

The real time clock interrupts and external interrupts are grouped together in the way they are handled 
because both can be held off by uninterruptable machine instructions being executed. These interrupts 
do not occur while an individual SSCI instruction is in progress of being executed. As each SSCI 
machine instruction in a computer program concludes being executed, a setting is made in the 
hardware that either allows or does not allow an interrupt to intervene before the following SSCI 
machine instruction in the program to be executed. Uninterruptable instructions are those that do not 
allow an interrupt to intervene before the next SSCl machine instruction gets executed. 

When they are allowed to occur, only the highest priority interrupt is acted upon. The real time clock 
has higher priority than any external interrupt, and the priority of the external interrupts is established 
by the PIMs hardware. 

Memory protect violation interrupts take priority over anything in the emulator, aside from a restart. 
Memory protect violations only arise as a result of emulating the execution of SSCI machine 
instructions - but when they arise they are immediately acted upon. So no instruction is uninterruptable 
with respect to a memory protect violation. 

The interruptability characteristics of individual SSCI instructions in respect to clock interrupts and 
external interrupts is difficult to establish. This information is important for writing device drivers or 
executive software, and should have been available from documentation but was not. The easiest 
method to get the information was to disassemble the SSCI microcode for all the SSCI machine 
instructions. Jump and Mark instructions are uninterruptable if and only if the jump condition is 
satisfied. If the Jump and Mark is unconditional, the instruction is uninterruptable. Most, but not all 
I/O instructions are uninterruptable, and the sense instructions are conditionally uninterruptable similar 
to the jump and marks. Unlike the Varians, double word instructions are generally interruptible on an 
SSCI, which was a great headache in developing the executive software for the Lepreau simulator 
DCC because of the different basis for the plant DCC executive software. 

THE TOP LEVEL EMULATOR LOGIC 

Figure 1 illustrates the top level logic of the emulator. The boxes (diamonds and rectangles) within 
Figure 1 are numbered 1 to 8 and are each described in turn. The heavier lines going between boxes 1 
and 2 indicate that this is "the main loop" where by far the majority of the execution time is spent. 

One enters the logic of figure 1 at box 1 after the SSCI emulator is called by the overall simulation 
dispatcher program which also calls the modeling of the various process systems of the plant such as 
boilers, heat transport, turbine, etc.). 



FIGURE 1 - OVERALL EMULATOR LOGIC 
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There are a few steps required to make an orderly transition from the plant modeling to the DCC 
emulator. Interrupts raised by the modeling are handled by calling the functions that lower the voltage 
of the appropriate lines going into the appropriate interrupt hardware of the emulator. This happens 
just before one enters Figure 1 at box 1. Another action on entry to the emulator is to set up a special 
event on the hardware event queue to happen at a hture time equal to the time when the emulator is 
required to return to its calling program. This event has the unique characteristic that the pointer to its 
event function is a NULL pointer. 

Box 1 is simply a test of the time remaining until the scheduled time of occurrence of the first event in 
the event queue. If this time is zero or negative, then control goes to box 3, but hundreds of times more 
often than that, control is given to box 2. 

Box 2 uses the memory mapping as previously explained to look up the bit pattern for the next SSCl 
machine instruction. This 16 bit pattern is used as an index into a 64k array of function pointers. To  
execute the function which emulates any given SSCI instruction one simply executes the function 
pointed to by the bit pattern of the instruction4. That SSCI instruction function has the responsibility to 
decrement the time to the first event in the event queue by a discrete amount corresponding to the 
estimated duration of that instruction on the real SSCI hardware. lf this instruction is interruptible it is 
required to return a value indicating interrupts are OK, otherwise return a value indicating otherwise. It 
was felt that a good compiler ensures the return value comes back in a register and therefore takes 
minimal overhead in the main l o o p 5 . ~ h e n  control passes to box 3, the time to the next event is 
generally negative, meaning the event is slightly overdue. This is a consequence of moving time 
forward by discrete amounts in box 2. So if the event queue is updated by removing the event at the 
head of the queue (in box 4, 6 or 8 below), the time to the next event must be reduced by the amount 
of time by which the current event is overdue. In that way the schedule is maintained without 
accumulating slippage. 

Box 3 checks to see if the event at the head of the event queue is an interrupt event. There is only one 
interrupt event allowed in the event queue. It is always inserted at 0 time delay in the queue, which is 
generally the front of the queue but on occasion may be behind overdue events. The interrupt event is 
placed in the queue only when all conditions have been satisfied for either a clock interrupt to occur or 
an external interrupt, except for knowing whether the last SSCI instruction executed was interruptible. 
The reason for doing this is because of the desire to keep the number of "if' tests in the main loop to 
just the single test jn box 1. Hundreds of instructions are executed just cycling back and forth from box 
1 to box 2, before there is generally a requirement to go to box 3. 

i t  is impractical to have 64k different functions to cover all possible 16 bit patterns. So one defines a 
limited set of functions such that each function executes efficiently even allowing for the variations 
implied by the range of different bit patterns covered by that one function. Invalid bit patterns point to 
a function that provides appropriate diagnostic information. These pointers are all set up by a utility 
program which writes a C language source file that appropriately initializes the 64k array of function 
pointers. In total the Lepreau emulator has a little over 500 distinct C functions, including all those for 
hardware devices as well as those that emulate machine instructions. 

The original design called for the uninterruptable SSCI instruction functions to call the next 
instruction function from within themselves, instead of calling all instruction functions from within box 
2 of the main loop. This leads to a requirement that such instruction functions be reentrant. This might 
seem problematic but would only have required careful programming for those few SSCI instructions 
which can directly cause non-memory protect interrupts (e.g. unmasking a priority interrupt module). 
The reason for finally abandoning this approach was to avoid unjustified delays in the occurrence of 
hardware events, that are now allowed to happen on schedule thanks to boxes 7 and 8 of figure 1. 



The commonest event is the 1 millisecond periodic update of the global time value used by the 
countdown registers. So it is more common to go from box 3 to box 4, than fiom box 3 to box 5. 

When a countdown register times out, that also causes a branching from box 3 to box 4. The 
countdown register time out event causes a finction call to lower the voltage on a line going into one 
of the priority interrupt modules (PIMs). Depending on the state of the PIM and the state of the PSW, 
that may or may not result in an interrupt event being placed on the event queue. 

In box 4 the event data structure is removed fiom the head of the event queue, and the hnction which 
was pointed to by the function pointer in that data structure is executed. In the case of a NULL pointer 
to the event function, the emulator returns to the dispatcher program that called it. 

Box 5 tests the return value from the last SSCI instruction that was executed to determine if it was 
interruptible or not. Usually the previous instruction is interruptible, in which case control is 
transferred to box 6. 

In box 6 the event data structure is removed from the head of the event queue, and the interrupt 
function which was pointed to by the function pointer in that data structure is executed. The interrupt 
function checks interrupts top down in priority order until it finds an interrupt that is ready to go. This 
involves checking the real time clock first6 and then the state of the Varian PIMs. Only the highest 
priority interrupt is a concern because the hardware immediately disables all interrupts as soon as the 
top priority one gets through. 

When any SSCI instruction is subsequently executed that may make it possible for an interrupt to 
come in, then there is a possibility that an interrupt event may again be inserted on the event queue 
depending on the status of the PIMs and PSW. 

When an SSCI instruction is executed at any time that has the potential effect of blocking an interrupt 
from coming in, there is no attempt to remove an interrupt event already on the event queue, because 
an assessment of the interrupt system would be needed before it could be known if it were correct to 
remove the event. Instead the interrupt event is simply allowed to occur. The interrupt event function 
checks interrupts in top down priority and therefore ends up checking all interrupts, if no interrupt is 
there. The interrupt event is removed in any case, and it has no effect if there is no interrupt set to go. 

Box 7 is for those cases where there is an interrupt at the head of the event queue, but it is being held 
off by at least one (and perhaps several consecutive) uninterruptable SSCI instructions that are handled 
in box 2. While the interrupt is stuclc at the front of the queue, the logic is required to look behind the 
interrupt event, to see if the following event is due to happen. By design there can be only one 
interrupt event, and so the next event is definitely not an interrupt. If the next event is due, control is 
transferred to box 8. 

In box 8, the non-interrupt event that is due has its data structure removed fiom the event queue, and 
the function is executed which was pointed to from the removed event. In the case of a NULL function 
pointer, the emulator returns to the simulator dispatcher program which called it. 

USER INTERFACE 

There is a mimic of the DCC keyboard in an alpha display window such that a mouse "operates" the 
keys on the DCC keyboard mimic. 

The real time clock interrupts periodically by having an event that reschedules itself according to the 
clock period set in the hardware (a 4 milliseconds period is set up in the SSCI executive). 



RAMTEIC channel 2 is emulated in another alpha display window. This is the reactor regulating 
system RAMTEIC DCC display channel corresponding to the emulated keyboard, showing the results 
of keyboard actions. 

Because of the design of the DCC software it is easy to call any function on any DCC keyboard from 
this one keyboard/display pair. It is also easy to dump a copy of any portion of the alpha screen to a 
printer. 

RAMTEK Channel 0 is emulated in another alpha window. This is the first annunciation display 
channel in the training simulator control room. 

The emulator includes DCC printer capabilities where the printer output goes to a "window" on the 
alpha, which one can save as a text file for analysis or which can be printed out. 

With the 17" display monitor it is normal to have all four of the above windows effectively visible at 
the same time: Iteyboard, 2 RAMTEK display channels, and printer output. 

Another window is for the software debugger which can be called up on the alpha as required. 

In addition to the foregoing, a complete desktop simulator also includes an instructor facility PC 
exactly the same as is used in the training simulator control room by the simulator instructors to run 
their lesson plans, record the results of simulations, control the insertion of thousands of different 
malfunctions, and generally manage the training experience. The same instructor facility software is 
used on the desktop simulator in conjunction with the DCC emulator. 

EXTENT OF DEVICE EMULATION 

Instructions covered by the emulator include everything necessary to run the original SSCI executive 
software for the Lepreau training simulator, and perhaps more. This instruction set covers the V70 
series of machines pretty well. The format 18 byte oriented instructions of the SSCI are not emulated 
as these are not used in our software: the SSCI is basically a clone of the 16 bit word oriented Varians. 
The format 26 double word move instructions are not emulated, nor are the Format 20 double 
precision instructions. The format 3 instructions (branch to control store, interpreter decoder) are not 
emulated and format 21 is apparently not used in the SSCI itself. Without exhaustive checking, it is at 
least close to the truth to claim that all instructions in all other formats have been emulated. 

The I10 instructions include operations on an A1 IOBIC, a display IOBIC and DIC, a BIOC subsystem 
(DT's, DO'S, AO's, watchdog timer, CDR's and CAE PIM mask registers), two BMU controllers and 
associated BIC's, a STATOS controller and an associated BIC, and a VIC plus the previously 
mentioned SSCI PIMs and CAE PIMs. 

The training simulator includes a Dacbus - Unibus Smart Controller (DUSC) providing interfacing 
between the SSCI and the VAX 4105 modeling computer of the training simulator. The DUSC is 
imitated knctionally, rather than doing a hardware emulation of its instruction set. 

Functions performed by the DUSC include a sampling of the SSCI timed DO's to provide the 
modeling with information on what fraction of time each timed DO has been closed over a recent 200 
millisecond period. A similar service is provided in the SSCI emulator with an ancillary process for the 
timed DO's where the function conducting this process is run from an event on the hardware event 
queue of the emulator. The event reschedules itself every 10 milliseconds, which corresponds to the 
sampling rate used by the DUSC for looking at the timed DO's. 



Another DUSC function is the feeding of contact alarm interrupts into the SSCI fiom a buffer of such 
alarms computed by modeling. A fimctionally similar process is set up in the emulator. 

The video hardcopy controller associated with the SSCI printer is not emulated because we have a 
built in graphics screen dump capability in the alpha windowing software. The gateway PDLC and 
associated BIC are also not emulated, as the gateway data dumping software is not usually in service 
on the training simulator. 

VALIDATION OF THE EMULATOR 

The emulator is not fully validated at the time of writing this document because there is not yet a 
sufficient body of experience using it. 

When the abstract was submitted for this paper about 3 months ago the only programs that had been 
run on the emulator were limited scope test programs. Significant sections of the emulator were not 
yet written, and no integrated testing had been done. 

During earlier development a concerted effort was made to develop test programs for all the interior 
(i.e. non- 1/0) SSCI machine instructions where these test programs self checked for certain results. 
The test programs were checked by running them on the real SSCI hardware, and then used to check 
the emulator by running the test programs on the emulator. 

As all the pieces of the emulator came together, the emulator was asked to run the SSCl executive 
software. Programming and emulator specification errors were discovered from this, and corrected. 

Once the SSCI executive ran on the emulator, the emulator was integrated with the full scope modeling 
of the Point Lepreau Nuclear power plant, and integrated testing continued. This resulted in the 
discovery and correction of some problems in the interfacing between the emulator and the modeling. 
About two weeks ago the DCC software running on the emulator first succeeded in keeping the 
modeled power plant at full power steady state. 

Since then debugging has continued, primarily on the RAMTEK display system emulation. Several 
overall plant transients have been run and examined with excellent results. Details of comparisons 
between the training simulator and the deslctop simulator are given in the companion paper (1). 

Successful execution of numerous complex overall plant transients in a manner that duplicates the 
performance of the training simulator is highly persuasive of the validity of the emulator. 

By the time this paper is presented in 7 weeks from now, it is anticipated there will be a lot more to say 
about experience using the emulator in day to day work at Point Lepreau. 
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