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INTRODUCTION 

A final disposal program for the spent nuclear fuel has been conducted in Taiwan for near 10 
years. At this stage, the program is processed with the regional investigation of the second year 
task of Phase 111, which was scheduled for 10 years. ITRI has been authorized by Taiwan Power 
Company to conduct this program for the first 4 years. The main goals are: (1) to develop the 
techniques and test equipments for the regonal investigation, (2) to conduct researches on thermal 
properbes of host rocks, engineering characteristics of hydraulic barriers, and 
retardation/dispersion of radionuclide for the program of perforrnance/safety assessment, and (3) 
to complete the preparatory work for the execution of site investigation in the next 6 years. In 
order to safely dispose of the spent nuclear fuel, the concept of Deep Geologcal Disposal 
adopted by the other countries has been selected in this program. 

In this p r o m  the project of rock mechanics is to be initiated this year. The work will be on 
reviewing papers of the in-situ stress lneasuring techniques and proposing the future plan of the 
project. The techniques of numerical modeling for rock engineering are also under our plans to 
develop. 

Rock masses, in general, are not continuous. Therefore, continuum models such as Finite 
Element Method (FEM) and Boundary Element Method (BEM), usually do not work well when 
predicting the response of rock masses to loading and unloading. On the other hand, Discrete 
Hernent Methods (DEM) are tailored for problems with many discontinuities and large 
displacements. The Discontinuous Deformation Analysis (DDA) method is a recently developed 
technique that falls into the family of DEM. Large displacements and deformations are considered 
under both static and dynamic loadings. 

Dr. Shi first presented the DDA method in 1984 [ 11 and published his PhD thesis [2] in 1988. 
Two models were included in the method First, the backward model computes the strains and 
displacements of a blocky system that best explains a set of displacement and strain observations 
made at a sufficient number of points. Second, the forward model computes the stresses, strains, 
sliding, block contact forces and block movements of a blocky system, based upon the knowledge 
of geometry, loading, and material constants (Young's moduli and Poisson's ratio) of each block, 



as well as fiction angles of contact joints. 

The distinct feature of the forward analysis, allowing large movements of rock blocks, enables 
the study of a variety of applications in rock mechanics including stability analysis and support 
design of underground excavations, dam abutments, and rock-fall [2]. This forward analysis has 
been used in several fields of rock mechanics, such as fracture propagation in intact rock using 
the artificial joint concept by Ke and Goodman [3], fracture analysis in intact rock and jointed 
rock using sub-block method by Lin [4], dynamic rock failure using simplex integrations by Shi 
[ 5 ] ,  and the behavior of tunnel openings in jointed rock masses by Yeung and Klein [6]. 

THE DDA MEIHOD 

In the DDA method, the displacements (yv) at any point (qy) in a block, i, are represented, in 
two dimensions, by three displacements and three strains, usually denoted in vector form by 

where (q,,v,) is the rigid body translation at a specific point (%,yo) within the block, r, is the 
rotation angle of the block with a rotation center at (%yo) and E, F, and y, are the nonnal and 
shear strains in the block. 

Assuming first order approximation, the displacements (u,v) at a point (x,y) inside block i can 
be expressed as follows 

where 

This equation enables the calculation of the displacements at any point (qy) within the block 
(in particular, at the comers), when the displacements are given at the center of rotation and when 
the strains (constant within the block) are known. In the two dimensional formulation of the DDA 
method, the center of rotation with coordinates (%,yo) coincides with the centroid with 
coordinates (%,y,). 

In the DDA method, individual blocks form a system of blocks through contacts among blocks 
and displacement constraints on single blocks. Assuming that n blocks are defined in the block 
system, Shi [2] showed that the simultaneous eqdibrium equatrons can be written in matrix form 
as follows 



where the total number of displacement unknowns Dij is the sum of the degrees of fieedom of 
all the blocks. In form, the system of w o n  (4) is similar to that in Finite Element Method 
FEM. Mathematically, the system of ep&ons (4) is solved for the displacement variables like 
FEM. However, the solution is constrained by a system of inequalities associated with block 
kinematics (e.g. no penetration and no tension between blocks) and Coulomb fiiction for sliding 
along block interfaces. The final solution to w o n  (4) is obtained as follows. First, the 
solution is checked to see how well the constraints are satisfied. If tension or penetration is found 
along any contact, the constraints are adjusted by selecting new locks and constraining positions 
and a modified version of Kj and Qj are formed fiom which a new solution is obtained. This 
process is repeated until no tension and no penetration is found along all of the block contacts. 
Hence, the final displacement variables for a given time step are actually obtained by an iterative 
process. 

The simultaneous equabons (4) were derived by Shi [2] by minimizing the total potential energy, 
Q of the block system. The i-th row of Equation (4) consists of six linear equations 

where the 4 are the deformation variables of block i. The total potential energy is the summation 
over all the potential energy sources, that is, individual stresses and forces. The potential energy 
of each force or stress and their derivatives are computed separately. The derivatives 

are the coefficients of unknowns 4, of the equdibriurn equations (4) for variable 4. AU terms 
of Equation (6) form a 6 x 6 sub-matrix, which is sub-matrix Y, in Equation (4). Equation (6) 
irnplies that matrix K in (4) is symmetric. The derivatives 



are the fiee terms of Equation (5) which are shifted to the right hand side. All these terms fom 
a 6 x 1 sub-matrix, which is added to the sub-matrix F,. 

Dr Shi's thesis [2] covers the details for forming sub-matrices Kj and F, for elastic 
stresses, initial stresses, point loads, 1 ine loads, volume forces, bolting forces, inertia forces and 
viscous forces. 

THE CRITERION OF BLOCK F R A m N G  

The criterion selected in this paper for block fracturing is a Mohr-Coulomb criterion with 
three parameters : so is the inherent shear strength of the block material, 41 is its fiiction angle and 
To represents its tensile strength. It is assumed that tensile normal stresses are positive, and the 
mjor and minor principal stresses are denoted as q and q (with q 2 q), respectively. A 
critical value of the minor principal stress is defined as 

where Co= 2sotan (d4 +#2) is the unconfined compressive strength of the block material. 
According to the Mohr-Coulomb fracturing criterion, shear failure occurs when 

(where '/\"and') and tensile failure occurs when 

The irmnediate advantage of this criterion is that different types of fiacture (in tension or shear) 
are well defined by the transitional normal stress q,. Tensile failure is more likely to occur in 
strong brittle rocks under tension. On the other hand, shear failure is more likely to occur in weak 
rocks. 

The three-parameter Mohr-Codomb criterion was added to the DDA progam and is graphically 
shown in the theoretical and physical plots in Figures l(a) and l(b). For each block of the 
system, the major and minor in-plane principal stresses O, and q are determined at the block's 
centroid If the condition of shear failure is satisfied within a breakable block, two failure planes 
are introduced They pass duough the block's centroid and inclined at r (d4  - w2) with respect 
to q, as shown in Figure 1. Then, the block is divided into four blocks and the analysis is 



resumed with a new block configuration. I( on the other hand, the condition of tensile failure is 
satisfied within a breakable block, a failure plane is introduced. It  passes through the block's 
centroid and oriented at right angles to O, as shown in Figure 1 . In this case, the block is divided 
into two blocks and the analysis is resumed 

In this formulation, no energy dissipation is assumed to occur during shear or tensile failure. 
Upon breaking, the new blocks are assumed to have the same velocities as the original block. 
Also, the new fractures have Coulomb friction and cohesion. 

MODELING UNDERGROUND EXCAVATION IN ROCKS 

Underground excavations are used in a variety of engineering projects. Underground 
excavations can be tunnels (railway, highway, etc.. .) or caverns (underground power plants, 
storage caverns, nuclear waste repositories, etc ...). Predicting the response of a rock mass to 
excavation can be done using closed-form (analyhcal) solutions or numerical methods. Closed- 
form solutions are only suited for ideal linear elastic and homogeneous rock conditions and for 
excavations of regular geometrical shape. On the other hand, for rock masses with more complex 
constitutive behavior or for excavations of complex geometry, numerical methods are necessary. 
The numerical methods that have been used for the modeling of underground excavations in rock 
include : the BEM method, the FEM method [7,8,9], the coupled FEM and BEM (FEBEM) 
method [ 10,11,12], and the Discrete Element Method [ 131. Among those, the BEM, FEM, and 
FEBEM methods can be used to determine the displacements and stresses in rock masses that are 
either continua or discontinua with a limited number of discontinui ties. Displacements along those 
discontinuities must be small and block movement is limited. On the other hand, in the DEM 
approach, the deformations within blocks and the kinematic motions across discontinuities are 
separately treated and therefore the mechanical behavior of jointed rock masses can be directly 
modeled. Also, large displacements and deformations in a rock mass are allowed. However, this 
method requires speci a1 treatment to account for the inter acti on among individual blocks. 

In the next three examples, the isotropic elastic stress and strain relationship in plane str'ain has 
been used to model the block constitutive behavior and the static analysis has been used to model 
the block movements and deformations. The penalty method has be used to enforce the block 
contacts. 

Ewmnple I. Consider a 4m x 5m tunnel constructed in 14m x 15m jointed rock masses, as shown 
in Fiyre 2(a). The joint spacing is 1.5m except the horizontal joint spacing in the middle is 2m 
A uniform vertical stress of 17.3 MPa is applied on top of the model to simulate the overburden 
of 667m The rock mass is not free to deform laterally. Fixed boundary block is used to simulate 
no lateral displacement. The intact rock has a unit weight ~ 2 . 6  x MN/m3, a Young's 
modulus E=1,000 MPa, and a Poisson's ratio ~ 0 . 2 3 .  The joint friction angle is 15 degrees. The 
analysis result after 1,500 time steps of 0.001 second time increment is shown Figure 2(a) and 
(b). Fiyre 2(a) shows the deformed tunnel (with solid lines) after its excavation. The bottom of 
the deformed tunnel exhibits an apparent heaving behavior which has been often found in the 
underground excavation. Figure 2(b) shows the size of the disturbed zone is about 2m fkorn the 
side walls, about 41n above the roof, and more than 41n below the bottom 



&ample 2. Consider again the same block geometry, material properties, and loading condition, 
as described in Example 1 .  Two rock bolts are placed on the roof block. Figure 3(a) shows the 
deformed tunnel after its excavation. Figure 3(b) shows that the disturbed zone is greatly changed 
around the tunnel comparing to the one in Figure 2(b). In other words, the stress concentration 
area and magnitude around the tunnel is much smaller than the one in Example 1 . It demonstrates 
that the rock bolts are able to stabilize the tunnel structure. As the rock bolts were not placed on 
the bottom of the tunnel, the heaving behavior was not eliminated there. 

Example 3. Consider again the same block geometry, material properhes, and loading condition, 
as described in Example 1, except the existence of a fault at a dip of 68.2 degrees, as shown in 
Figure 4(a). Figure 4(b) shows the disturbed zone is abruptly changed around the tunnel and 
along the fault. Especially, a stress concentration area exists on top of the tunnel and along the 
fault. Again, as the rock bolts were not placed on the bottom of the tunnel, the heaving behavior 
was still found there. 

CONCLUSIONS 

It is a new attempt to apply the DDA method to model the underground excavation problems 
which will be encountered in the h a 1  disposal program for the spent nuclear fuel in Taiwan. The 
method, basically, allows large displacements along rock joints and enables to simulate block 
kinematic motions. The examples, as presented in the previous section, demonstrate the ability 
of the method to capture the disturbed zone around tunnels with the existence of rock bolts or 
located in various geological conditions of rock mass. 
The newly developed program for the DDA method by Lin [4] also enables to simulate the 
fkacture analysis of rocks. One example, as shown in Figure 5, shows a tunneling problem with 
a roof failure using the DDA dynamic analysis. Prior to block fracturing, the rock blocks were 
uniformly in square shape and supported by a beam as the top of the 3.7m x 4.9m tunnel. 
However, the rock mass collapses when the support beam starts breaking. More examples 
allowing block fkactures can be found in reference 141. 
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