
PARALLEL ACCELERATION AND REBALANCING SCHEMES
FOR SOLVING TRANSPORT PROBLEMS USING PVM

Instit ut de G h i e Nuclkaire, &ole Polytechnique de Montreal
hlontreal, Quebec, Canada H3C 3A7

Centre de Recherches Mathematiques, Universitk de Montreal
Montreal. Quebec. Canada H3C 357

Email : qaddou@hans.crm.umontreal.ca

Abstract - In this paper, parallelization for CP calculation and multigroup
flux computation are presented. Implementation of acceleration and neutron
re balancing strategies is also investigated. Particular techniques pertinent to
the two-step energy/space iterative process of solving a multigroup transport
equation are described. The parallel performance is studied in cases where the
cyclic tracking technique is used to integrate CP. Parallelization is achieved
by distributing ei ther different energy groups or different regions on set of pro-
cessors. These algorithms were tested on 4 processors IBM SP-2, 4 processors
SPARC 2000 as well as 8 processors SPARC 1000 using the public domain
PVM library. Typical run times are provided for unit cell calculations.

I. INTRODUCTION

Most Canadian lattice cell codes attempt to solve the transport equation using first-
flight collision probabilities. First step in doing such calculations consists in performing
numerical integration (ray tracing) on the cell or supercell geometry. The CPU times
can become prohibitive for multigroup evaluation of these probabilities. The standard
multigroup flux solver is generally a two-step iterative process using the inverse power
method.['] Fortunately, such algorithms can be parallelized efficiently.

In this paper, we will show how the collision probability (CP) methods are suitable
for parallelization. Some particular parallel techniques, pertinent to the energyjspace

iterative process of solving a multigroup transport equation were already 2. 31

The speedups observed in such parallel simulations enable consistent calculations using
several machines? with limited communication times. However, there still remains the
problem of decreasing the global CPU times of the simulations. Nour, we intend to focus
on acceleration and neutron rebalancing strategies. The motivation is to increase the
parallel algorithm performance sufficiently to enable analvsis of very large problems (large
spatial domain and many energy groups).

This paper thus investigates how acceleratior~ and rebalancing strategy can be imple-
mented to the previous parallel schemes in order to increase their global performance for
obtaining a converged flux map. The performance is studied in cases where the cyclic
tracking technique is used to integrate CP. These schemes were tested on 4 processors
IBM SP-2, 4 processors SPARC 2000 as well as on 8 processors SPARC 1000 using the
public domain PVM library. Further typical run times will be provided for some standard
cell calculations.

The paper is organized as follows. In Section I1 we give a detailed description of
two differents approaches used to solve multigroup transport equation and the neutron
rebalancing and variational accelerations techniques. In Section I11 the main steps for the
parallelization of the equations are discussed, also some communications routines from
the parallel environment PVM are briefly commented. Performance results are given in
Section IV. Finally, conclusions are drawn in the last section.

II. NUMERICAL METHODS FOR SOLVING MULTIGROUP TRANSPORT EQUA-
TION

In the first two subsections tivo differents approaches to the multigroup transport
equation are investigated. These two methods involve two iteration processes (an inner
iteration to treat the flux and an outer iteration for sources and multiplication factor
calculations). Two acceleration methods that are used to improve the convergence speed
of the inner iteration are the object) of the two last subsections.

II..4. Self-scatter~ngreductionscheme (multigroup)

A usual operation performed before solving the linear transport system on sequential
architecture is called self-scattering reduction of the collision probability matrices. Using
this scheme, all scattering information pertinent to group g is transferred to the left-side
of the equation, so that the system to be solved is in the form:[']

where P; is an element of the group g mat'rix, representing the first-flight reduced prob-
ability from region i to region j which has been multiplied by the volume V, of region j ;
the C P reciprocity relations assess the symmetry of Pg matrices. The usual macroscopic
cross sections (C, and Cf) are formed by combining the microscopic cross sections of
various isotopes

Assuming a fixed right-hand side, solution of the left-hand side can be achieved either
by an iterative or a direct method. Using direct inversions of these full matrices of order
I, we will have to compute the scattering-reduced matrix Wg for every energy group :

so that the linear system in Eq. (1) can be simplified to:

where the new external sources are now coming only from other groups and are given by:

and fission neutrons are still provided by:

The system of Eqs. (3)-(5) is solved by inverse power method assuming a starting value
+

corresponding to a fission source vector S. This is the numerical scheme corresponding
to a standard wav of solving the ~nultigroup problem when using the integral transport
equation.i41.

However, the self-scattering reduction is not necessarily the only way of solving the
linear transport system on sequential architecture as we will see in the next subsection.

11. B. Spatial recomposi t ion scheme (rn ul tiregion)

Another completely different approach which consists of a two-step iterative process is
presented. This original scheme of partitioning the spatial domain instead of the energy
domain has been initiated by Henkel and Turinsky in order to solve the few-group diffusion
equation. .

We partition the spatial domain into L non-overlapping set of regions, and reorder the
flux and the source vector so that, for each set B (blocks B = 1 ,2 , ..., L) of regions, we
reorder unknowns to form block-dependent and global flux and source vectors:

where @, represents a direct sum used to concatenate all the unknowns together.
The system to be solved is rewritten in the form:

The updated unknowns from block B' # B are unavailable to the processor responsible
for block B, so the usual inverse power it,erat.or have to be slightly changed. Collecting
coefficients pertinent to each block B. this system of equations is now iteratively solved
as:

("+'I d- c~B'@$) = S t) ; B = 1 , 2 , ..., L, DBQB

where we have used matrix form and where V B is a one-block multigroup matrix which
can be split in the following form:

The submatrices 1; and ug express respectively the down- and up-scattering contributions
in block B from energy group j to group i.

For each block B, we have a fixed source problem, and another (inner) iterative method
is once more used to calculate the fluxes. At each step, the following block subsystem has
to be solved :

and the fluxes in the regions of B (for all energy groups) are:

where 3;'') and $0 are respectively the (k + 1)"' and kth order approximation to the
B-fluxes. This level of iteration provides a convergence for fluxes even in energy groups
concerned by up-scattering. Since not all the regions are included in each block B, an
interesting property of matrices d i is that their spectral radius is much smaller than
the ones of matrices involved in the self-scattering scheme. The multiregion scheme is
thus applied to subparts of the geometric domains, and Eq. (11) acts as if the transport
problem with fixed sources has to be solved only for each subpart. All these properties
can help to improve blockconvergence, especially in the case of high-scattering regions.

At each flux calculation in Eq. (11) each processor communicates to others their local
computed flux. The term of scattering in Z t B is reevaluated for including the contributions
of sources coming from other blocks. This level of iteration now constitutes the inner
iterations, and we expect the convergence of all the block fluxes + J B , to yield a new
flux map.

Our new iterative strategy (for outer iterations) is inserted in the process to take into
account the flux-dependent fission sources. At each outer iteration, only a part of the
effective multiplication factor kg) of n"' order approximation is known inside the block
B and is evaluated using the following expression:

After communications of local computed ks between the blocks, the total multiplication
factor is then calculated as:

and the fission sources 5':); B = 1 , 2 , L are then reevaluated using multiplication factor
and the fluxes thus computed and communicated:

and these sources can be used as input in the next inner iteration process to give a new flux
map @:("+'). The inner-outer iterations then proceed until the convergence of k(") -t Ke8
and of the flux distribution.

11. C. Rebalancing scheme

Rebalancing is a popular scheme applied to production codes in order to accelerate
inner iterations. This scheme is introduced to deal with the problem of neutron transfers
between various groups due to scattering. If we rewrite Eq.(lO) (or Eq.(3)) in following
matrix form:

where Hg is the explicit linear operator for the group solver. We observe that in both
previous flux solvers schemes, fluxes become unbalanced because upscattered neutrons
are not taken directly into accountl during the inner iteration.

The objective of the flux rebalancing method is to enhance the rate of convergence by
imposing neutron conservation after every iteration, and thus to force the equality:

where Ct is the total cross section, and Ff is given by:
I

We compute for each unconverged energy group an average rebalancing factor a9 such
that the rebalanced flux Gf defined as:

satisfies exactly Eq. (16). We obtain the following system:

This later system is resolved after each inner iteration. The computed a9, are used to
update rebalanced fluxes $9 for the next inner iteration.

I1.D. Variational relaxation scheme

The next acceleration method we will introduce is a variational relaxation method. As-
suming fixed source S obtained from an outer iteration, in general we can rewrite the
equation of the flux, in inner itera,tion. in the following matrix form:

@(n+l) = ~ @ (n) + S4 (20)

The relaxation method: that we will use, consists in using an extrapolation formula
as:

where p and R are the acceleration parameter and the residual respectively. In ordinary
over-relaxation, this acceleration parameter is fixed to a value greater than one for all
inner iterations. Here, we will introduce a variable acceleration parameter ~ 1 (") which can
be computed efficiently after each iteration using variational method.I61

The principle of variational method is, at each iteration , to take in Eq. (21) the value
of p that minimizes I I R("+') (1 , where

Suppose that we estimate the residual using an L2-norm

the condition of minimizing is -& 1 1 R("+l) 1 l 2 = 0.
At each iteration n, the follo~rring optimum value of p is obtained:

To illustrate this acceleration process, suppose that. we have performed three inner
iterations without acceleration:

then, we can define:

It can be easily shown that:

Inner convergence implies that, for n lerge enough, le21 < lell with sign(el) = sign(ea)
leading to p(n) > 0 (often p(n) >> 1). At each inner iteration, we can thus decide t o

apply the acceleration factor or not. Kot'e also that the CPU overhead associated with
acceleration is minimal because, using the accelerated flux computed as:

one can also obtained the next unaccelerated estimate as:

without doing a new inner iteration. The whole acceleration process is very efficient
because it always keeps three last iterates of the flux on a stack, and decides if the last
two are accelerated or not.

111. CODE P14RALLELIZATION

A parallel subset of the DRAGON 171 code was written in such a way that it can run
for an arbitrary number of processors (which becomes an input). This subset (referred
to as DPV-01) contains only the routines necessary to evaluate CP from the DRAGON
tracking files and the GOXS macroscopic cross section files. In DPV-01, the flux solver
was entirely redesigned. A major criterion of good programming resides in making a code
as portable as possible: only few changes would be necessary in order to change from a
parallel environment to another. Furthermore, debugging consists of working with only
one processor, making it run successfully and then going further up. This explains our
choice of using the public domain PVM available for all kinds of workstations.

I1I.A. Parallel multigroup solu tion

The parallel algorithm corresponding to self-scattering reduction scheme (1I.A.) as-
signs each energy group to a different processor.[21 Each processor integrates C P for a
set of energy groups. This parallel strategy for computing CP matrices has also been
programmed in the TDT code, a subset of APOLLO-~.[~] The loop of CP calculations is
done by the pij routine:
do ig=me+l, ngrp,nproc

call pij (. . . ,Pmat (ig))
enddo

where ngrp, nproc and me=l, ..., nproc are the total number of energy groups, the total
number of processors and the processor identifier respectively.

Each processor then calculates self-scattered matrices associated with its subset of
energy ranges. Using the routine calcul that will form the left-hand matrices of Eq. (1)
and the routine invers that will compute the matrix Wg of Eq. (2)) the self-scattering
parallel algorithm gives rise to the following loop:

do ig =me+l, ngpr, nproc
call calcul(Pmat (ig) ,.. .Amat (ig))
call invers (Amat (ig) ,. . . Wmat (ig))

enddo

Assuming an initial flux map, an outer iterative process is started. A fission source is
calculated by each processor on its corresponding set of energy groups. An inner iterative
process is started on each processor.

At step k of the inner iterations, each processor computes its local flux solution:

d o ig = m e + l , ngpr , n p r o c
Phi(ig) = W m a t (i g) q(ig)

e n d d o

These fluxes are broadcasted to the other nodes. Each processor then rebalances all
the unconverged energy groups by performing the resolution of the system in Eq. (18).
Rebalancing is followed by calling acceleration routine:

do me =0, nproc-1
call FLUBAL(me,Phi , . ..Phibal)
P h i = P h i b a l
call FLUACC(me,Ph i , . . .Phiacc)
Ph i=Phiacc

e n d d o

The inner iterations are continued until convergence of flux distribution.
Then the outer iteration continues, and each processor calculates the contribution of

its set of energy groups to the total KeR after executing the following loops:

Keff(me) =O.
do ig m e + l , ngrp, n p r o c

Keff(me) = Keff(me)+NuSfmat(ig) Ph i (ig)
e n d d o

For each processor, the value of the local Ker(me) is broadcasted to the other nodes.
Each processor compute the sum KeA, and upadte the fission source related to its energy
subgroup which will be used in the next inner iterations.

The iterative process are continued until convergence of Ker and of the flux distribu-
tion.

III. B. Parallel multiregion iterative solution

The multiregion parallel algorithm assigns each block of regions to a different processor.[1]
The CP integration is repeated by each processor, even if it gives the same values. This
CPU overhead is the price to pay if we do not want to classify the tracks by block; this
classification is theoretically possible but, with the cyclic tracking method which uses
specular reflexion, most of cell calculation are done using very long tracks, that will in-
tersect many regions, and thus many blocks. This explains why we compute the same
complete probability matrices by each processor.

The CP matrices are distributed among the processors so that each of them can
calculate its matrices V B and CBB/ (B' # B) .

Assuming an initial flux map. an outer iteration starts in each processor. Initial fission
terms in Z B 1 sources are calculated and used as input in the inner iterations. At each
inner iteration each processor calculates its local block flux distribution by performing
the resolution of eq. (1 0) for blocks B (inner iterations). .After intercommunication of
fluxes, rebalancing and acceleration are then done in a sequential way by each processor.
The inner iteration continues until convergence of global flux distribution with the initial
fission terms in SB I .

Then, each processor calculates the contribution of its block to total multiplication
factor (see Eq.(12)). The following loop is thus executed:
Keff(me) =O.O
do iB =(me) N b l k + l , (me+l) Nblk

Keff(me)=Keff(me) +Nusfmat (iB) Phi(iB)
enddo

where me and Nblk are the processor identifier and the total number of blocks in the
processor me respectively. As in the previous parallel algorithm, each processor com-
municates to others nodes its own contribution to total Kes, and reevaluates the fission
terms in the sources ZB in Eq. (14) :

do iB = (me) Nblk+l, (me+l) Nblk
s(iB) =0.0
do jB = 1, Nblk

s(iB) =s(iB) + P(iB, JB) XSCHI(jB) NuSfmat (jB) Phi(jB)
enddo

enddo

which will serve as input in the next inner iterations. The iterative process continues until
convergence of Ker and of the global flux distribution on each processor.

1II.C. Communication between processors

The processors use standard routines of PVM to communicate data one to onother.
To illustrate this, we give here, a brief description of a subset of code which provide
intercommunication of fluxes for parallel multigroup scheme:
ngrpro = 0
do ig =(me+l),ngrp,nproc

igg=ig
call pvmfpack (. . . ,igg , . . .)
call pvmfpack (. . .,Phi (. . . ,igg) , . . .)
ngrpro= ngrpro+l

enddo
do I1 = 1,nproc-1

call pvmfsend(tids(mod(me+II,nproc)) ,2,.. .)
enddo
do I1 = 1,nproc-1

call pvmfrecv(- 1,2,. . .)

Figure 1: intercommunication of local critical multiplication factor

do IJ =l,ngrpro
call pvmfunpack(. . .,igg,. . .)
call pvmfunpack(. . .,Phi (. . . ,igg) ,nr,. . .)
enddo

enddo

where nr and ngrpro are the total number of spatial regions and the number of energy
groups in the the processor me respectively. The routines pvmfpack pack the data into
the active send buffer and the routines pvmfunpack unpack the data from the active
receive buffer. The routine pvmfsend sends a message to other processor, pvmfsend has
the identifier of the recipient processor and the message type as variables. The variable
-1 in the routine pvmfrecv means that messages coming from any other processor can
be accepted, and the second variable 2 is the message type.

As for fluxes each processor communicates to others nodes its local computed Keff (me)
(see Figure I) , and each processor calculates the sum KeR.

IV. APPLICATIONS

The parallel multigroup and multiregion schemes described above were tested on sev-
eral types of computers including:

the IBM SP-2 a t ~ c o l e Polytechnique de Montreal, limited to 4 processors;

Sparc 2000 at ~ c o l e Polytechnique de ~ontrea1,Gmited to 4 processors;

an 8 processors Sparc 1000 at Centre de Recherches Mathematiques of Montreal
University.

1V.A. Test problems

The two parallel iterative schemes were used to integrate probabilities and compute
fluxes for a unit cell geometry and the physical data corresponding with one of the
Mosteller benchmarks.[g] The unit cell geometry is a 2-D square with three concentric
annulii inside. There are three different material regions corresponding to the fuel, its
sheat surrounded by light-water coolant. This cell problem is further divided to obtain
32 zones.

I . . !Vumerical results and discussion

For the variational acceleration. we alternate between sets of non-accelerated and
accelerated iterations. The reason for this is to compensate for instabilities arising due to
non-fondamental modes excited by this variational acceleration technique. In fact after
numerical testing, it was found that one should alternate between 3 non-accelerated and
3 accelerated iterations ((3.3) acceleration scheme).

The test problems were examined for both multigroup and multiregion parallel schemes.
In order to compare parallel schemes and hardware, we choose to present a 69 groups prob-
lem. Table 1 contains the CPU times obtained by using multigroup parallel scheme for
1,2, 3 and 4 processors (with and without (rebalancing+variational acceleration)). Table
2 shows the CPU for 1, 2 and 4 processors (with and without (rebalancing+variational
acceleration)) by using multiregion parallel scheme. As one can see, the CPU time nec-
essary for converging the solution of the transport equation, in both schemes. is reduced
by using the acceleration and neutron rebalancing techniques. As can be seen, the CPU
times observed for both methods using the IBM SP2 with 4 processors are extremely
competitive with the best available tools for solving this kind of transport problems.

In Table 3 we present the number of iterations necessary for converging in both meth-
ods. We remark that the use of acceleration and neutron rebalancing dramatically de-
creases the number of iterations needed for convergence, and consequently reduces the
communication between processors.

Let us recall that the speedup value is the ratio between the CPU time required for one
processor and the CPU time required for N processors to solve the same problem. Thus
the best speedup, called ideal linear speedup, that one can expect is equal to the number
of processors. In practice, communications are slowing the program and the speedup
decreases. This decrease depends on the extent of communications.

We remark (see Figure 2-5) that the use of acceleration and neutron rebalancing
techniques in both mettiods improve the speedups. The reason for this is that in the
accelerated schemes the computing time between two successive communications of fluxes
between processsors is increased by the time needed for acceleration and neutron rebalanc-
ing techniques. The ratio between communication time and computation time decreases
and then the speedup

Even if the CPU's of Sparc 1000 (or 2000) are slower than the ones of IBM SP-2,
the figures show that the best speedup is achieved by Sparc 1000 (or 2000). This is
explained by the fact that this machine processors use a shared memory architecture, and
so, message passing is faster and more efficient than IBM SP-2 fast communication links.

The high multiregion/multigroup CPU ratio, displayed by comparison of Table 1 and
Table 2, is not surprising in view of the higher number of floating point operations involved
in the multiregion algorithm. However, this scheme can be useful in distributing amoung
several processors the amount. of memory required for transport calculations involving a
very large number of regions.

V. CONCLUSION

Numerical results using parallel iterative schemes for solving the multigroup transport
equation have been presented. All these schemes use a two-step iterative process (with
inner-outer iterations) for finding the critical multiplication factor in a multigroup iterator.
In the coming years, fine-group calculations using thousands of regions could be useful
to assess transport and equivalence computations on cross-section libraries over complex
geometries. The parallel algorithms developed here will provide users with sufficient
resources to perform this kind of benchmarking, without the usual memory and CPU
limitations imposed by problem size.

Acknowledgements- This ~rrork has been carried out partly with the help of grants
from Atomic Energy of Canada Ltd and the Natural Science and Engineering Research
Council of Canada. The authors would like to thank Vincent Cavuoti, from &ole Poly-
technique de Montreal, who give us access to IBM SP2 and Sparc 2000

REFERENCES

[I] A. Qaddouri, R. Roy, M. Mayrand, and B. Goulard, "Collision Probability Calculation
and Multigroup Flux Solvers Using PVM ",Nucl. Sci. Eng., 123, 392 (1996)

[2] A. Qaddouri, R. Roy, and B. Goulard, "Multigroup Flux Solvers Using PVM ",
Proc.Int. Conf on Mathematics and Computations, Reactor Physics and Environ-
mental Analyses, Portland, Oregon, April 30-May 4, 1995, American Nuclear Society
(1995).

[3] E. Fuentes and P. J . Turinsky. "Parallel Implementation of Integral Transport Meth-
ods," Nucl. Sci. Eng., 121, 277 (1995).

[4] R. Sanchez and N.J. McCormick. "A Review of Neutron Transport Approximations,"
Nucl. Sci. Eng. 80 , 481 (1982).

[5] C.S. Henkel and P.J. Turinsky. "Solution of the Few-Group Diffusion Equation on
a Distributed Memory Multiprocessor." Top. Mtg. on Advances in Reactor Physics,
Charleston USA (1992).

[6] M. Livolant, "Mkthodes itkratives simples pour la rbolution de problemes lineaires,"
Report SPM-706, CEN Saclay (1968).

[7] G. Marleau, A. Hebert, and R. Roy "DRAGON: A Collision Probability Transport
Code for cell and Multicell Calculations," Report IGE-100, ~ c o l e Polytechnique de
Montreal, Canada (1990).

[8] 2. Stankovski, "A Massively Parallel Algorithm for the Collision Probability Calcu-
lations in Apollo-I1 Code Using the PVM Library", Proc.Int. Conf on Mathematics
and Computations, Reactor Physics and Environmental Analyses. Analyses, Portland,
Oregon, April 30-May 4, 1995, American Nuclear Society (1995).

[9] R.D. Mosteller and a]., "Benchmark Calculations for the Doppler Coefficient of Re-
activity", Nucl. Sci. Eng. 107; 265 (1991).

[lo] S.E. Goodman and S.T. Hedetniemi Introduction the Design and Analysis o f Algo-
rithms, McGraw-Hill, New York (1977).

Table 1: CPU times for the Multigroup Parallel Scheme
without /with rebalancing and acceleration

(using 69 energy groups and 32 regions)

Table 2: CPU times for the Multiregion Parallel Scheme
without/with rebalancing and acceleration

(using 69 energy groups and 32 regions)

Table 3: number of iterations for both Parallel Schemes
without /with acceleration and rebalancing

(using 69 energy groups and 32 regions)

IBM SP2 -
Sparcl 000 +-.
Sparc2000 .a- -

LJ

parallel multiregion algorithm
217136

815

4 .

3

84
4

parallel multigroup algorithm
263117
1013

r

L

I I

-

inner iterations
outer iterations

2 -

1
1 2 3 4

Number of processors

Figure 2: Speedup curves for unaccelerated multigroup parallel scheme. Performance of
various types of processors are compared using 69 condensed groups and 32 regions.

2 3
Number of processors

3

Figure 3: Speedup curves for accelerated multigroup parallel scheme. Performance of
various types of processors are compared using 69 condensed groups and 32 regions.

IBM SP2 t
SparclOOO --
Sparc2000 -0 . .

- % _...
.... _...- _--- _.._.- _---

..-. . _.--
. _*---

ti

2 -

1

2 3
Number of pmcessors

4

3

Figure 4: Speedup curves for unaccelerated multiregion parallel scheme. Performance of
various types of processors are compared using 69 condensed groups and 32 regions.

I I

IBM SP2 +
SparclOOO +-
SpardOOO .o--

-

IBM SP2 +
Sparcl 000 +-.
Sparc2000 -o

2 3 4
Number of processors

Figure 5: Speedup curves for accelerated multiregion parallel scheme. Performance of
various types of processors are compared using 69 condensed groups and 32 regions.

