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Abstract - As an alternative to prohibitve Monte Carlo simulations, deterministic 
methods can be used to simulate reseach reactors. Using various microscopic cross section 
libraries currently available in Canada, flux distributions were obtained from DRAGON 
cell and supercell transport calculations. Then, homogenization/condensation is done to 
produce few-group nuclear properties, and diffusion calculations were performed using 
DON JON core models. In this paper, the multigroup modular environment of the code 
DONJON is presented, and the various steps required in the modelling of SLOWPOKE 
hexagonal cores are described. Numerical simulations are also compared with experimen- 
tal data available for the EPM Slowpoke reactor. 

I. INTRODUCTION 

Most research reactors have small and highly heterogeneous cores. Thus, leakage ef- 
fects out of these cores are generally difficult to predict. To study the core behavior, 
one usually performs numerous simulations using probabilistic methods. However deter- 
ministic methods with similar simulation capabilities allow these studies to be less time 
consuming. In these approaches, a diffusion model of the core, along with its reflector 
and some structural material, is needed. Furthermore the nuclear properties must be 
obtained from a transport calculation, using a homogenization/condensation process for 
macroscopic cross sections and diffusion coefficients. Application of the usual multigroup 
transport/diffusion coupled simulations for research reactors is complicated by the fact 
that one must predict an accurate migration of neutrons throughout the core. Many dif- 
fusion codes are limited to a small number of energy groups which precludes their use for 
such research reactor studies. 

Based on the TRIVAC-3 multigroup diffusion solver,[ll the DONJON code has been 
extended to perform complex simulations in a user-friendly environment.l2$ 31 The code 
$so allows solution on 3D Cartesian and hexagonal geometries, enabling users to perfor- 
m simulations for various reactor types. Produced by the DRAGON transport code,l41 
multigroup nuclear properties can be used directly in DONJON. With these capabali- 
ties, DONJON is used in our effort to understand the High Enrichment Uranium (HEU) 



Slowpoke-2 reactor at h o l e  Polytechnique. 
The paper will summarize the evolution of the TRIVAC solver, with particular em- 

phasis on its current use in research reactor studies. The simulation capability of the 
DONJON code will also be described. Numerical results will be given and compared with 
experimental data for HEU Slowpoke reactor. It will be shown that DRAGON/DONJON 
results are in reasonably good agreement with these experimental results. 

11. DONJON CAPABILITIES 

1I.A. Hexagonal ADIsolver 

The T W A C  code was developed to solve diffusion equation on Cartesian and cylin- 
drical geometries with finite element or finite difference discretization . The one-speed 
diffusion equation can be discretized into an extended eigenvdue value problem of the 
form: 

A$ = X B ~  (1) 

To solve this equation, matrix A must be inverted. As this matrix is sparse, the 
inversion process will fill it in and will be very time consuming. To avoid this problem, 
the TRIVAC solver uses the Alternating Direction Implicit (ADI) method. The AD1 
method is based on the interchangeability of the roles of mesh lines along each direction, 
leading to the splitting of the matrix A. The original version of TRIVAC solver uses AD1 
method on Cartesian geometries. Work was done to allow its use for 2D and 3D hexagonal 
geometries. ['I 

For these geometries, there are 4 non-orthogond directions, X, Y, Z and W as shown 
in Figure 1. The fourth direction is used to access neighbours at 60'. In that case, the 
matrix A can be written as: 

where 
U matrix containing the diagonal elements of A 
W ,X,Y ,Z  matrices containing the coupling components of A along each axis 
P,,P,, P,, P, permutation matrices that will ensured that W ,X,Y and Z have a 

diagonal banded structure. 

Using AD1 splitting, matrix A does not need to be explicitly constructed. Matrix 
assembly module creates four symmetric and diagonal banded matrices 2, p, 2 and w 
such as : 

These four matrices composed an approximation of matrix A and are used to define 
the preconditionning matrix M as: 



Matrices 2, p, 2 and w are not explicitly inverted, but factorized with Choleski method. 
The diffusion equation is solved using the preconditioned power method. This iterative 

method is described by the following algorithm: 

6 ' )  given 
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To obtain $('+'I, at least one AD1 calculation per outer iteration is performed. It is 
normally enough to converge, but when systems are highly coupled the number of AD1 
cdculations can be increased either at user demand or automatically by the code itself. 

This method is accelerated with a tw+parameter variational scheme. If we consider 
only one-speed equations, accelerated fluxes are given by: 

where a(k) and p(*) are dynamically-calculated relaxation 
The iterative strategy is composed of free and accelerated iterations. Free iterations 

are obtained with dk) = 1 and p(k) = 0. For accelerated iterations, dk) and p(k) are 
computed to minimize an appropriate functional. There are by default 3 free iterations 
followed by 3 accelerated ones. 

1I.B. Multigroup static calculations 

The above resolution methods are used to solve multigroup diffusion equations as well. 
Partition between energy groups is made according to: 

These equations are solved from the fastest to the slowest group because upscattering 
matrices Ash, for h > g, are generally zero matrices. This partition is represented as an 
example of 5 energy group problem in Figure 2. A,, matrices are composed of the diffusion 
terms, which represent spatial coupling coefficients. These matrices are so splitted with 
AD1 method as explained above. Scattering matrices Agh only contain terms to transfer 
neutrons from one group to another and therefore have a diagonal form with respect to 
spatial discretization. Only diagonal values are then stored. 

Table 1 shows the CPU time needed to compute a single diffusion solution on a 
CANDU-6 like reactor and on the HEU Slowpoke reactor. The Slowpoke-2 reactor rep- 
resentation involves a great number of regions per energy group in comparison with a 
CANDU reactor. As we can see, CPU time increases with the number of groups but stays 
in acceptable limits. 



1I.C. Extended capabilities: devices, detectors ... 

To realize more advanced calculations involving different reactor configuration, fea- 
tures were added, such as device representation, detector responses and kinetics capabili- 
ties. A useful part of these new features is the possibility to define devices as geometrical 
parts of the core over the actual resolution geometry. 

Therefore, device geometric definitions and movements are independent of the res- 
olution geometry, and they do not affect their incremental cross sections. Devices in 
Cartesian geometries are easy to define as a set of coordinates in the geometry axis. For 
hexagonal geometry, elements in each Z plane are numbered from the center to the outside 
region in circle. In this context, it is simple to access hexagons by their number instead of 
coordinates. Hexagonal devices are also defined by their actual coordinates along Z-axis 
and by the number of hexagons they occupy in the complete geometry. They are supposed 
to occupy totally at least a hexagon. 

DONJON also allows movement and control of such devices during a simulation with 
respect to user-defined algorithms. Actual position of a device is set in terms of fraction of 
full pmi tions. For example, if a Cartesian device moves dong Y axis, its present position 

fraction will be : 

where Y,, is the maximal position of the device, Yre1 the orign of Y axis and Y E  the 
actual maximal position along Y axis. Speeds in fraction of full speed can also be defined 
with respect to a maximal speed allowed for the device. Devices can only move along one 
existing axis of the geometry. 

For any device type in the proper corresponding resolution geometry, the mesh prop- 
erties are obtained by adding a compound fraction of device properties over the original 
cell properties: 

[device in] -  device out] 
9 1 (10) 

where f is. the volumetric fraction occupied by the device in the cell. 
When a device is moved, the cells it affects are reestablished as well as the volumetric 

fraction of each of them. This allows simulations to be realized without paying any 
particular at tention to the device positions along with time. 

Detectors can also be used in simulations as flux indicators for regulation capability 
or as flux reference point. Like a device, a detector is defined by coordinates for Cartesian 
and cylindrical geometries or by hexagon numbering for hexagonal ones. With these 
geometrical informations, flux interpolation can be performed to recover it at a special 
site. Spectral informations must be given to the detectors according to their sensibility 
in order to recover a single value representing the actual detector response. 

When using for regulation capability, detector responses are generally computed in 
fraction of full power with respect to a referenced state. But they can also be used to 
input a flux value at a special point and then using this value to normalize the overall 
fluxes in order to obtain reactor power. In this case, the normalization factor is : 



The corresponding reactor power will be computed as: 

P = < H + >  xf,, (12) 

This capability is very useful to follow the power excursion in a transient and then 
compare it with measured data. 

111. DRAGON USE FOR PROPERTY GENERATION 

The lattice code DRAGON was used to obtain macroscopic energy dependent cross 
sections for DONJON calculations. Those properties must be computed to respect the 
diffusion theory, i.e. using a homogenization/condensation process for macroscopic cross 
sections a d  diffusion coefficients. To accurately take care of the leakage effects, DRAGON 
computations are realized using B1 homogeneous model. In this model, total cross sections 
are corrected to include leakage effects such as: 

where B2 is the buckling, and d, are the groupdependent leakage coefficients. 
With a first estimate of the correction to the total cross sections, the eigenvalue prob- 

lem is solved. At each outer iteration, a new buckling value B2 is computed using the 
homogenized cell or supercell properties, then leakage coefficients d, are calculated. Ab- 
sorption cross sections are corrected by the streaming term d,B2 and a new solution to 
the eigenvalue problem is computed. These iterations end when K e f f  reachs 1.0. The final 
buckling is used to compute diffusion coefficients for core calculations. Nuclear properties 
can then be homogenized and condensed to a few energy groups. 

For HEU Slowpoke reactor, the transport core model is a 2D cluster that represents 
each different material. Proper core conditions, such as material temperatures, are also 
set. So new calculations have to be done for each new core condition. Microscopic libraries 
such as Winfrith or ENDF-B libraries fiom AECL can be used. When the transport 
equation is solved and the material regions are homogenized, informations are stored to 
produce condensation of the macroscopic properties. Different final number of groups can 
be considered by condensing the initial energy band of 0. to 10 Mev. As illustrated in 
Table 2, the energy cut has been made to obtain an equal number of groups in the thermal 
and fast spectrum. 

The resulting macroscopic properties are stored in the COMPO files. This type of file 
has been developed to unify output storage and to be able to keep macroscopic as well 
as microscopic cross sections with a variable number of energy groups and for different 
burnup steps. The COMPO files are directly accessed in the DONJON computation to 
insure adequate data flow. 

IV. HEU SLOWPOKE-2 SIMULATIONS 

IV. A. Previous work 

Temperature reactivity measurements were carried out at h o l e  Polytechnique in 1987. 
~ u e r t i n [ ~ l  attempted to reproduce these coefficients using WIMS-CRNL,[~] DRAGON and 



TRIVAC codes. As in many research reactors, the HEU Slowpoke-:! reactor has a hexago- 
nal core with a reflector composed of a beryllium annulus pierced by five irradiation sites. 
This study was carried out using a previous version of TRIVAC which solved the diffusion 
equation for only two energy groups, without any up-scattering effect. Only Cartesian or 
cylindrical geometries were available. The HEU Slowpoke-2 was then represented as an 
R-Z geometry where fuel and irradiation sites were smeared into cylindrical zones. Macro- 
scopic properties were generated from WIMS-CRNL based on the 69-group WIMS-AECL 
microscopic library, and detailed studies were done with DRAGON in order to determine 
the behavior of water holes in the core (using double heterogeneity) .[q 

These two energy group simulations gave reactivity far above the critical condition 
of the HEU core. These results were essentially due to the sub-moderation inside the 
reactor that could not be represented with the 2 energy group model. Nevertheless, 
negative temperature feedback behavior was successfully reproduced. The need for a full 
multigroup approach to the problem and for a more accurate representation of the core 
geometry was demonstrated. 

IV.B. Reactor representation in DONJON 

The capability of hexagonal geometry in DRAGON and DONJON codes allows a more 
accurate representation of the HEU Slowpoke reactor. In DONJON, the 3D hexagonal 
model of the reactor is composed of the core, its reflector and part of the light-water 
pool surrounding the core. Static calculations in the DONJON code are performed. To 
improve the reactor model, the number of energy groups and the spatial discretization 
were looked at, in order to find converged values where fluxes and multiplication factor 
are stable. 

To separate the different materials along the Z axis, 9 planes are required. In this 
case, the light-water zones on top and bottom of the core are represented as two planes, so 
reflector conditions are not well taken into account. The number of Z planes was increased 
to 13, in splitting the water regions. It was necessary to increase the number of Z-planes 
to insure an accurate value of the initial core criticality. When the number of planes is 
increased, the multiplication factor decreased. From 20 Z planes, Kef is almost stable. 
The converged reactor geometry is so composed of 31 concentric crowns of hexagons per 
Z plane, for 20 planes. The total number of unknows per energy groups is * 60000. This 
study was done with only two energy groups because of memory limitations. 

The number of energy groups, N,, used in DONJON has also been changed to find an 
optimum between CPU time and required storage while representing an accurate behavior 
of the reactor. In this context, values of N, from 2 to 8 were considered with the available 
AECL microscopic libraries (WIMSLIB, ENDF/B5, ENDFIBG). Calculations for 10 and 
12 energy groups were also performed but were limited to 13 Z-planes. Fig. 3 shows 
that there is no need to go beyond 6 energy groups. Above that, the reactivity is almost 
constant, although CPU time increases significantly. 

The HEU Slowpoke-2 reactor is controlled by a single aluminium sheathed rod. This 
rod is 38 cm high and is composed of two aluminium spacers and a cadmium absorber. 
Nuclear properties of the rod were also computed with DRAGON. The rod is represented 
as two regions, one for the absorber and one for its guide tube. In DONJON, the rod is 



placed in the 7 central hexagons of the affected planes. As it was early mentionned, it  
can be moved to affect different planes of the reactor. 

For 6 energy groups with no control rod, Fig. 4 shows the most thermal flux over the 
core. One can see the high level of flux in the beryllium reflector as well as flux drops in 
the irradiation sites. 

IV. C. DONJON procedures 

DONJON code is composed of a collection of modules, which call is controlled by 
CLE2000 language. This environment allows an interpreted input where programming 
facilities are included as variables, loops, control statements and procedures. Modules 
interact with each other by objects. An object is a data structure, particular to a type ; 
for example, a geometry object is composed of a geometry type ( Cartesian, cylindrical 
...), meshes, material mixture number of each region etc. 

In that context, inputs are constructed as programs and instructions are grouped in 
procedures. To realize a static calculation, a straightforward sequence of modules has to 
be called: 

GEO D : hexagonal geometry definition 

CRE: recovery of nuclear properties 

TRIVAT: tracking of the geometry 

TRIVAA: diffusion matrix assembly 

FLUD: diffusion equation solver 

For input clarity, some variables can be defined as for number of regions or flux iteration 
precision. Even in a very simple case, these module calls can be divided in procedures: 
one for defining and tracking the geometry PGEO, one for recovering nuclear properties 
PMAC, and one to compute fluxes FLUX. The two first procedures are called object 
creation procedures ; when a geometry is defined, for any following static or even kinetics 
calculations, there is no use to reexecute the geometry definition procedure. The same 
logic is applied to property recovering. 

When control devices are defined in the calculation, data structures for it must be 
constructed and can also be stored for further use. So a control rod is defined by I N I D E  
V:, INPROC: modules and these modules compose PROD procedure. In Fig. 5, these 
procedure calls are shown. Circles represent objects ; doubled-line squares are procedures 
and single-line ones are modules. The creation procedures can be followed by a flux cal- 
culation as shown in the left side of the figure. If not, the resulting objects are stored and 
are directly accessed in later runs. 

The left side of Fig. 5 illustrates the iterative possibility of a single input in DONJON. 
The procedure MODROD is used to set a new position for the rod with the module 
LINKDS:. The module NEWMAC: allows the calculation of actual mesh properties 
with respect to rod position. 



V. NUMERICAL RESULTS 

With the DONJON capabilities listed above, different calculations were canied out 
to study the HEU Slowpoke-2 reactor. Calculations for the control rod worth, the tem- 
perature reactivity coefficient of the reactor and the critical rod position depending on 
temperature were considered. 

With the preceeding reactor and control rod model, reactivity worth of the rod was 
computed. For a nominal core configuration (at 20°C), a reactivity worth of = 5.3 mk 
was obtained whereas the experimental one is 5.4 mk. This result is almost independent 
of the microscopic library used in the DRAGON calculations as shown in Table 3. 

One of the most important properties when determining the operating characteristics 
of a research reactor is its temperature reactivity coefficient. Experiments were done in 
the HEU Slowpoke-2 reactor at &ole Polytechnique to study the reactor behavior for 
various uniform temperatures. 

In a first test to reproduce these measures, calculations were done in keeping the 
control rod outside of the reactor. Nuclear properties were thus computed with DRAGON 
at different temperatures from 10°C to 50°C. For each set of properties, static diffusion 
calculations were performed and excess reactivity is plotted in Fig. 6. For any available 
microscopic library used in DRAGON, the reactivity variation vs. uniform temperature 
curve is very much like the experimental one, while only calculations with ENDFIB5 
library show a slope close to the measurements. 

Nevertheless, reactivity levels are very different between microscopic libraries. Mi- 
croscopic properties are not tabulated with the same temperatures in the three libraries, 
mainly for Beryllium isotope that compose the reactor reflector. Some libraries have also 
different isotopes for the same material, equivalence between these materials is difficult 
to assure. 

To measure the temperature effect, the control rod position was noted and then re- 
activity was obtained from its reactivity calibration. Due to reactor configuration, the 
control rod absorbs neutrons only when it is located in the 8 lastest inches of its course. 
When the measures were made, the control rod was almost fully inserted and its maximal 
displacement was of one inch. 

So the second test to reproduce measured data was the search for critical rod positions 
at each uniform temperature. The nuclear properties produced with DRAGON for the 
preceeding test were used. Critical state of the reactor was chosen at 20°C for the rod 
inserted at 86.72% of full insertion, so = 6 inches in the core. 

For this reactor state, static calculations were done for properties from WIMS-AECL 
and ENDFIB5 libraries. The resulting multiplication factors represent critical values in 
the following search. Brent's method is then used to find the control rod position for which 
the reactor is critical, so Kel is equal to the reference one. When using this method, two 
initial states must be found to bracket the root value. 

To carry out this simulation in DONJON, rod reactivity worth vs position was drawn 
in order to find two rod positions for which Kef f  is above and under the reference value. 
Fig. 7 shows the rod reactivity calibration. Calculations were performed at a uniform 
temperature of 20°C. The computation values are lower than the experimental data but 
reproduce a close curve. 



Fig. 8 shows the rod position vs temperature as measured and as calculated. The 
three curves have the same shape. The values obtained with ENDFIB5 library are closer 
to the measured ones than the WIMS-AECL ones. In Fig. 6, the same observation is 
valid. ~ u l t s  with ENDF/B5 library give a smooth slope with respect to temperature 
while WIMS-AECL library ones show a greater reactivity difference between 10°C and 
40°C values. As the control rod model represents the same reactivity worth as measured 
(Fig. 7), its movements to compensate for temperature reactivity increase are coherent. 

VI. Conclusion 

DONJON modular aspects allows complex static and time-dependent calculations in 
a single run and has proved to be useful to study core behaviors. CPU time needed to 
compute deterministic calculations is less than for probabilistic approach, and the results 
are reasonably accurate. 

Even if geometric model of the reactor is less precise than in probabilistic codes, 
calculations with DRAGON/DON JON codes give good agreements with measurements. 
As DONJON code possesses kinetics capabilities, the next step in the HEU Slowpoke 
reector study is to follow a day of operation or to look at power transients. 
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Figure 1 : Main direction for a 3D hexagon 

Figure 2: Example of a &group matrix eigenvalue problem 



Table 1: CPU Time in comparison with energy groups. 
Computation realized on one scalar node of the SP2 at EPM. 

Table 2: Upper limit of each energy group 

# energy groups 

2 
4 
6 
8 

CANDU reactor 
6000 unknowslenergy group 

time (s) 
7 
17 
- 
- 

Fast 
groups 

Thermal 
tzroups 

Slowpoke reactor 
50000 unknows/energy group 

time (s) 
102 
255 
397 
663 

Upper limit (eV) 

with 2 groups 

1.00E+07 
- 
- 
- 

4.00E+00 
- 
- 
- 

with 4 groups 

1.00E+07 
5.533+03 

- 
- 

4.00E+00 
6.25E-01 

- 
- 

with 6 groups 

l.OOE+07 
8.2 1 E+05 
5.53E+03 

- 

4.00E+00 
6.25E01 
1.00E01 

- 

with 8 groups 

1.00E+07 
8 -2 1 E+05 
5.53E+03 
2.77E+0 1 

4.00E+00 
6.25E-01 
2.20E01 
5.00E0 1 



3 4 5 6 

Number of energy groups 

Figure 3: Energy group convergence 

, M t i o n  site 

. \  

Figure 4: Most thermal flux in the Slowpoke-2 reactor. 



Figure 5: DONJON procedure calls. 



Table 3: Control rod worth 6 energy groups, 20°C 

-4 

10 15 20 25 30 35 40 45 

Temperature ( O C )  

Figure 6: Temperature &activity for HEU Slowpoke reactor 
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Figure 7: Control rod reactivity calibration 
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Figure 8: Control rod critical position 




